計測自動制御学会東北支部第 225 回研究集会(2005.11.11) 資料番号 225-16

# 小径エンドミル加工による溝形状の精度評価

## Estimation of Accuracy on The Ditch Shape by Small Diameter End Mill Machining

○戸井田直仁\*, 小林義和\*\*, 白井健二\*\*, 戸澤幸一\*\*\*

ONaohito Toida<sup>\*</sup>, Yoshikazu Kobayashi<sup>\*\*</sup>, Kenji Shirai<sup>\*\*</sup>, Kouichi Tozawa<sup>\*\*\*</sup>

\*日本大学大学院,\*\*日本大学,\*\*\*日産自動車㈱

<sup>\*</sup>Graduate School, Nihon University, <sup>\*\*</sup>Nihon University, <sup>\*\*\*</sup>Nissan Motor Corporation

**キーワード**:表面テクスチャ (Surface texture),機械精度 (Machining accuracy),加工 (Milling), CAD/CAM, CAT

**連絡先**:〒963-8642 福島県郡山市田村町徳定字中河原1番地 日本大学大学院 工学研究科 情報工学専攻 生産システム工学研究室 戸井田直仁, La:(024)956-8824, Fax:(024)956-8863, E-mail:u136114@ushiwaka.ce.nihon-u.ac.jp

#### 1. 緒言

エンドミル加工は、CAD/CAM、工作機械 及び切削工具などの技術向上により、高速・ 高精度化が進展している.また自動車、デジ タル機器などの部品の視覚的な付加価値や 機能向上を図る上で表面テクスチャに関す る研究が注目されている<sup>1)</sup>.

テクスチャの加工方法としてはエッヂン グによるものが代表的であるが、小径のエン ドミルを用いた再現性の高い機械加工によ る表面テクスチャの生成が注目されている. その場合、機械加工における工作機械の熱変 形、高速回転時の主軸・工具のアンバランス、 切削抵抗による工具の変形などの要因が加 工精度に影響する.そのため高精度な表面テ クスチャを生成するためには,実際の加工精 度を計測・評価して,その問題を解決してい く必要がある.

本研究においては、ボールエンドミルで溝 加工された表面テクスチャを走査型白色光 干渉計および SEM により高精度に計測し、 テクスチャ生成における加工誤差の特徴を 解析し、高精度化のための評価を行った.

## 2. 研究の方法

織物形状の CAD, 金型シボなど表面テク

スチャ生成において, デザイナーの意図通り に高精度加工するには, 例えば, 溝加工の加 工精度に関して加工及び計測により解析す る方法がある.

溝加工はボールエンドミルあるいはフラ ットエンドミル工具の使用が一般的である. しかしながら,自由曲面加工への展開を考慮 して,さらに高さ方向の僅かな誤差量で溝幅 が大きく変化する特徴を解析するため,ボー ルエンドミル工具によって評価した.

本研究においては、小径のボールエンドミ ル工具により高精度加工を行い、溝幅、溝深 さ及び溝形状の特徴を走査型白色光干渉計 と SEM により計測し、以下の2項目につい て実験を行った.

- 1) 溝幅と溝深さの幾何学的な相関を検証 する.
- 2) 微細な部分計測により加工誤差を解析 する.

# 3. 溝幅と溝深さの幾何学的な相関の 検証

Fig. 1 に示すように加工誤差がなければ, ボールエンドミルの溝加工幅 W は以下の式 により示される.

 $W = 2\sqrt{R^2 - (R - d)^2}$ ここで R: 工具半径, d: 溝深さである.



Fig. 1 溝幅と溝深さの関係

Fig. 2 に走査型白色光干渉計で, その溝幅 と溝深さを計測した結果を示す.

材料は鋼材(S50C)とプラスチック (PMMA)を対象に各種加工条件において, 加工後の溝幅と深さを計測し,加工誤差のな い場合を想定した溝幅/溝深さ曲線に対し て実際の値をプロットした.切削送りは,と もに 500µm/s である. Fig. 3 は,加工条件別 の溝幅・溝深さの計測結果であり,(a)は PMMA,(b)は S50C の場合を示している. この結果から以下のことがわかった.

1) PMMA, S50C は共通に加工誤差ゼロの

- 曲線に対して溝幅が狭くなっている. ただし溝深さが増大し, 20μm 前後になる と加工誤差はゼロに近くなる.
- S50Cは、10,000rpmの回転数が最も加工 誤差が小さい傾向にある。

ここで、いずれの条件においても、大小の 差はあるものの、溝深さを基準とすれば溝幅 は小さくなり、溝幅を基準とすれば溝深さは 大きくなるという傾向にある.

この原因を追求するため, Fig. 3(b)に示す 加工誤差の小さい加工条件 A(主軸回転数: 10,000rpm, 平均切込み深さ:14.8µm)と加 工誤差の大きい加工条件 B(主軸回転数: 30,000rpm, 平均切込み深さ:14.2µm)断面 形状を走査型白色光干渉計により比較した. なお, 溝幅を基準とすると加工条件 A の溝



Fig. 2 溝幅・溝深さの計測方法





# (b) 加工条件別の溝幅・溝深さ(S50C)Fig. 3 溝幅・溝深さの計測結果

深さは関係式の値よりは 2.0µm 大きく, 加工 条件 B は 4.5µm 大きくなっていることがわ かる.

#### 4. 加工誤差の解析

Fig. 4に加工条件 A の断面計測の結果を, Fig. 5(a)に加工条件 B の結果を示す.加工条件 A では曲率変化が滑らかであるが,加工 条件 B では特に底部が凹み傾向にある.こ の凹みを拡大して,実際のボールエンドミル の工具軌跡と比較した結果を Fig. 5(b)に示 す.実際の工具 R の軌跡に対して約 5.8µm の凹みがあることがわかる.この結果は実際 の加工誤差 4.5µm とほぼ同一であり,底部の 凹みが加工誤差の主要因といえる.

この凹みの原因を調べる上で,表面状態を



Fig. 4 加工誤差の小さい加工条件 A



## (b) 溝加工断面形状の誤差解析 Fig. 5 加工誤差の大きい加工条件 B

SEM により観察した. Fig. 6 は,加工条件 別の観察した結果であり(a)は主軸回転数: 10,000rpm, (b)は主軸回転数: 30,000rpm であ る.切削送りは,ともに 500µm/s である. (b) は,アップカット部,ダウンカット部ともに (a)と比較して,クレータの発生が顕著であり, 工具磨耗または高速回転による振れが原因 であると推定できた.

さらに実験結果として, Fig. 7 は加工長 100mm 間で 10mm 間隔に走査型白色光干渉



(a) 主軸回転数:10,000rpm



# (b) 主軸回転数: 30,000rpmFig. 6 SEM による加工表面観察

計により溝幅と溝深さの計測結果を示す.計 測結果より 30,000rpm の方が 10,000rpm より 溝幅,溝深さともに切削量が大きいことがわ かる.この結果より工具磨耗による影響と底 部の凹みに関連性があることが検証された.

#### 5. 結言

ボールエンドミルにより溝加工した溝幅, 溝 深さを走査型白色光干渉計および SEM で計 測した結果, その誤差が底部の凹み量である ことがわかった.

今後は対象とする工具をフラットエンド ミルとし、高精度表面テクスチャ生成におけ る溝加工精度に関して、切削抵抗の影響など の要因を付加して、さらに高精度化を追及し ていきたい.



## Fig. 7 加工長 100mm による主軸回転数別 の溝幅・溝深さ

### 参考文献

 戸澤幸一、小林義和、白井健二:機械 加工による表面テクスチャリングシス テムの開発、2004 年度精密工学会北海 道支部学術講演会講演論文集(2004)、29