
計測自動制御学会東北支部 第225回研究集会 (2005.11.11)

資料番号 225-9

線形位相特性を持つ2次元状態空間ディジタルフィルタの
GAによる設計

GA-Based Design of 2-D State Space Digital Filters
with Linear Phase

○南 相哲∗，阿部 正英∗，川又 政征∗

○Sang-Churl Nam∗, Masahide Abe∗, Masayuki kawamata∗

*東北大学大学院工学研究科電子工学専攻

*Department of Electronic Engineering, School of Engineering, Tohoku University

キーワード : 2次元ディジタルフィルタ (2-D digital filters)，状態空間モデル (state space model)，遺伝的アルゴ

リズム (genetic algorithm)，線形位相特性 (linear phase characteristic)，群遅延 (group delay)

連絡先 : 〒980-8579 仙台市青葉区荒巻字青葉6-6-05 東北大学 大学院 工学研究科 電子工学専攻 川又研究室

南 相哲，Tel.: (022)795-7095，Fax.: (022)263-9169，E-mail: nam@mk.ecei.tohoku.ac.jp

1. Introduction

Two of the important applications of 2-D digital

filters are currently found in image processing and

seismic signal processing. It has been shown that

the phase response as well as the magnitude re-

sponse of a 2-D digital filter is important and usu-

ally a zero phase or a linear phase response (corre-

sponding to a constant group delay) is preferable

in many cases [1,2]. For FIR filters, phase linearity

is easily enforced analytically through coefficient

symmetry. In the case of IIR filters with causal nu-

merator and denominator, however, phase linearity

can not be implemented. Thus, minimization of

phase nonlinearity must be incorporated into the

optimization procedure.

In this paper, we discuss a GA-based design

method of 2-D state space digital filters which ap-

proximate not only a specified magnitude response

but also a constant group delay. In our proposed

method, we restrict ourselves to a class of 2-D sep-

arable denominator digital filters. This is because

the stability test of the 2-D separable denominator

digital filters is much easier than that of the gen-

eral (non-separable denominator) 2-D digital fil-

ters. On the other hand, the 2-D separable denom-

inator digital filters have a disadvantage that their

performance does not excel general 2-D IIR digi-

tal filters in approximation of spatial-domain and

frequency-domain specification. However, any 2-D

spatial and frequency domain specifications can be

approximated with 2-D separable denominator dig-

ital filters as nearly accurately as with general 2-D

IIR filters.
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The organization of this paper is as follows: Sec-

tion 2 introduces Roesser’s local state space model

to represent 2-D separable denominator digital fil-

ters and describes the formulation of the design

problem. Section 3 discusses some basic concepts

of genetic algorithm and genetic operators used in

our proposed method. After that, the coding prob-

lem of the filter coefficients and the calculation of

the fitness value are explained. Section 4 shows

the necessary steps for searching the optimal solu-

tion from the design problem. Section 5 explains

the stability check of 2-D state space digital filters.

Section 6 presents a numerical example to demon-

strate the effectiveness of the proposed method. Fi-

nally, the concluding remarks are given in Section

7.

2. Statement of the Problem

2.1 2-D Separable Denominator

Digital Filters

A linear, shift-invariant, and causal 2-D separa-

ble denominator recursive digital filter can be de-

scribed with the following tranfer function:

H(z1, z2) =
N(z1, z2)

D1(z1)D2(z2)

=

N1∑
k1=0

N2∑
k2=0

a(k1, k2)z−k1
1 z−k2

2

(1 −
N1∑
k1

b
(k1)
1 z−k1

1 )(1 −
N2∑
k2

b
(k2)
2 z−k2

2 )
(1)

where D1(z1) and D2(z2) are polynomials of de-

grees N1 in z−1
1 and N2 in z−1

2 , respectively. The

2-D digital filter with the transfer function given

by Eq. (1) can be represented by Roesser’s local

state-space model [3] as follows:[
xh(n1 + 1, n2)
xv(n1, n2 + 1)

]
=

[
A1 A2

0 A4

][
xh(n1, n2)
xv(n1, n2)

]
+

[
b1

b2

]
u(n1, n2)

(2)

y(n1, n2) =
[
c1 c2

] [
xh(n1, n2)
xv(n1, n2)

]
+du(n1, n2) (3)

where u(i, j) is the input, y(i, j) is the output,

xh(i, j) is a horizontal state vector of order N1,

xv(i, j) is a vertical state vector of order N2, and

matrices A1, A2, A4, b1, b2, c1, c2, and scalar

d are real coefficient matrices with appropriate di-

mensions.

By applying the 2-D z–transform to Eqs. (2)

and (3) while assuming zero initial conditions

(xh(0, n2) = xv(n1, 0) = 0 for n1, n2 <= 0), we ob-

tain the following transfer function:

H(z1, z2) = c [z1IN1 ⊕ z2IN2 − A]−1
b + d (4)

where ⊕ denotes the direct sum of matrices, and

IN1 and IN2 are N1 × N1 and N2 × N2 iden-

tity matrices, respectively. By letting z1 = ejω1

and z2 = ejω2 in Eq. (4), the frequency response

H(ejω1 , ejω2) of the filter is expressed as

H(ejω1 , ejω2) = H(ω1, ω2)ejφ(ω1,ω2) (5)

where

H(ω1, ω2) = |H(ejω1 , ejω2)| (6)

φ(ω1, ω2) = argH(ejω1 , ejω2) (7)

are the magnitude response and the phase response

of the filter, respectively. The group delay func-

tions are defined as

τk = −∂φ(ω1, ω2)
∂ωk

(k = 1, 2). (8)

A 2-D digital filter should have a linear or almost

linear phase response to minimize phase distortions

in 2-D digital filtering. This is equivalent to having

a constant or almost constant group delay.
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2.2 Formulation of the Design Prob-

lem

The design problem is to find a set of coefficient

matrices A1, A2, A4, b1, b2 c1, c2 and scalar d

such that the function H(ejω1 , ejω2) simultaneously

approximates both the given magnitude and a pre-

scribed group delay in the passband.

Let Em be an error function between the desired

and the resulting magnitude response. Let Eτ1 and

Eτ2 be also error functions between the desired and

the resulting group delays with respect to ω1 and

ω2, respectively. Then the design problem can be

formulated as follows:

[ Formulation ] Search a set of coefficient ma-

trices A1, A2, A4, b1, b2 c1, c2 and scalar d which

simultaneously minimize

Em(A1,A2,A4, b1, b2, c1, c2, d) (9)

and

Eτ1(A1,A2,A4, b1, b2, c1, c2, d)

+Eτ2(A1,A2,A4, b1, b2, c1, c2, d) (10)

subject to the constraint that the resultant filter is

stable, where

Em=

{∑
m

∑
n

|Hd(ω1m, ω2n) − H(ω1m, ω2n)|2
}1/2

(11)

Eτ1=

∑∑
passband

|τd1(ω1n, ω2n) − τ1(ω1m, ω2n)|2


1/2

(12)

Eτ2=

∑∑
passband

|τd2(ω1n, ω2n) − τ2(ω1m, ω2n)|2


1/2

(13)

where m and n are sample points in the 2-D fre-

quency plane, Hd and H are the given magnitude

response and the magnitude response of the re-

sulting filter, respectively, and τdi
(i = 1, 2) and

τi(i = 1, 2) are the given group delay and the group

delay of the resulting filter with respect to ω1 and

ω2, respectively.

3. Application of GA to the

Design Problem

3.1 Genetic Algorithm

Genetic algorithms (GAs) have become a popular

and powerful search algorithm, which is based on

ideas borrowed from the theories of natural selec-

tion [4]. It is very useful to find the global opti-

mum solution because of requiring no calculation

of gradient and being not susceptible to local opti-

mum problems with multi-modal error surface. In

our proposed method, to apply the GA to the de-

sign problem, all elements of the filter coefficients

are encoded into the Gray codes of B bits, and

these are concatenated together to form a chromo-

some. After evaluating the fitness with respect to

every chromosome, the most suitable solutions in

population are likely to survive and to be trans-

mitted to the new generation by using selection,

crossover and mutation, which are called genetic

operators. The better chromosomes are selected

according to fitness value to reproduce the next

generation, whereas the poorer chromosomes are

lost. This selection of the better chromosomes de-

creases the mean fitness of population but does

not generate any new chromosome. The selected

chromosomes are carried out through a crossover

procedure. The crossover takes two chromosomes

(called parent1 and parent2) and generates two new

chromosomes (called offspring1 and offspring2) [4].

The crossover procedure used in this paper is Uni-
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form Crossover [5], which randomly generates the

crossover mask with the same bit length as the

chromosome, and exchanges a pair of chromosomes

according to the crossover mask with crossover rate

Pc. The crossover procedure can be illustrated as

follows:

Parent 1 : 1 1 1 1 1 1 1 1
Parent 2 : 0 0 0 0 0 0 0 0
Mask : 1 0 0 0 1 0 1 0
Offspring 1 : 1 0 0 0 1 0 1 1
Offspring 2 : 0 1 1 1 0 1 0 0.

Note that even though selection and crossover ef-

fectively search the optimal solution in the design

procedure, they may lose some potentially useful

genetic material. Therefore, after the crossover,

mutation procedure is introduced to protect a loss

of useful genetic material from premature conver-

gence. The mutation operation alters the gene from

“0” to “1” or from “1” to “0” with mutation rate

Pm [4].

Unlike traditional optimization methods, the GA

can escape from local minimum value through the

mutation procedure, even after it converges into lo-

cal minimum value [4]. In our design procedure, we

use an elitist strategy where one chromosome or a

few of the best chromosomes are copied into the

next generation without mutation and crossover

procedure. The elitist strategy may increase the

speed of domination of a population by a super

chromosome, but on balance it appears to improve

the performance of the GA [6]. The cycle of evo-

lution is repeated until a desired termination crite-

rion is satisfied. This termination criterion is set by

the number of computational runs, or the amount

of variation of the best solution between different

generations, or a pre-defined value of fitness.

3.2 Coding and Fitness Function

As for the coding, all coefficients aij , bi, cj , d of the

matrices A, b, c and scalar d are encoded into the

Gray codes of B bits inside the interval (−1, 1). To

decode the Gray codes into real values, the Gray

codes are converted to the binary codes. Next to

that, all binary codes are calculated to the corre-

sponding real value according to the following equa-

tions:

a
(k)
ij =

(−1)αij,B

2B−1

B−1∑
b=0

αij,b2b−1 (14)

b
(k)
i =

(−1)βi,B

2B−1

B−1∑
b=0

βi,b2b−1 (15)

c
(k)
j =

(−1)γj,B

2B−1

B−1∑
b=0

γj,b2b−1 (16)

d =
(−1)δ

2B−1

B−1∑
b=0

δ2b−1 (17)

where i = 1, 2, · · · ,m + n, j = 1, 2, · · · ,m + n and

k = 1, 2, · · · , N ; N is a population size.

In order to obtain the fitness values for each chro-

mosome, we first calculate the objective function

values by using the following equations:

g
(k)
1 =

{
E

(k)
m , if the filter is stable

Es, if the filter is unstable
(18)

g
(k)
2 =

{
E

(k)
τ1 + E

(k)
τ2 , if the filter is stable

Es, if the filter is unstable
.(19)

where the parameter Es is a predefined big value,

which is assigned to unstable chromosomes (filters).

Since each chromosome individually goes

through the same evaluating exercise, the range of

this value varies from one chromosome to another.

To maintain uniformity of the range of this value,

it is necessary for the objective values to be scaled.

Rank based fitness scaling procedure [7] is used in

our design problem as follows:

f (k) = ranking(−g(k)) (20)
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where k = 1, 2, · · · , N ; N is a population size,

and ranking (·) represents rank based fitness scal-

ing procedure. This rank based fitness scaling ap-

proach can help to avoid the premature conver-

gence caused by “super chromosomes” that have

an unusually high fitness ratio. In Eqs. (18) and

(19), we assign a big value (Es) to unstable chro-

mosomes. The reason for this is that although the

unstable chromosomes are used as genetic informa-

tion in the next generation, their chances of sur-

vival will decrease by the selection scheme. As a

consequence, it is concluded that unstable chromo-

somes will gradually decrease in number with gen-

eration renewal and disappear before convergence

in the design procedure. By using rank based fit-

ness scaling procedure, the fitness value with re-

spect to g
(k)
1 and g

(k)
2 is obtained. To design a dig-

ital filter approximating both the magnitude and

the group delay, we use the following cost function:

f (k) = αf
(k)
1 + (1 − α)f (k)

2 (0 <= α <= 1). (21)

where the positive constant α represents the im-

portant factor and is a measure of the significance

of each objective in the optimization process.

4. Design Procedure based on

a GA

There are several tuning parameters to be specified

before executing the GA. These parameters are as

follows:

N population size
Pc probability of crossover
Pm probability of mutation
Ctc termination condition.

The design algorithm using the GA is summa-

rized as follows.

Step 0: (Initialization) Choose all GA parameters

described in the above and generate N chro-

mosomes randomly using the Gray codes.

Step 1: (Stability test and Evaluation) Check the

stability of each chromosome and evaluate its

fitness using Eq. (21).

Step 2: (Selection) Select new N chromosomes

randomly by Roulette wheel selection approach

based on each fitness.

Step 3: (Crossover) Execute the crossover opera-

tion on N/2 chromosome pairs selected in Step

2 with the probability Pc.

Step 4: (Mutation) Apply the mutation operation

on N chromosomes generated in Step 3 with

the probability Pm.

Step 5: Stop the design procedure if the value of

the best solution does not improve in a pre-

scribed termination constant Ctc-th genera-

tion. If not, repeat Steps 1 − 4 with a new

population generated in Step 4.

5. Stability Issue

The stability of 2-D separable denominator state-

space digital filters is checked by using the following

two conditions:

Theorem 1 A 2-D separable denominator state

space digital filter is stable if and only if for its

state transition matrix A =

[
A1 A2

0 A4

]
,

|λi(A1)| < 1, i = 1, 2, · · · ,m

|λj(A4)| < 1, j = 1, 2, · · · , n
(22)

where λi(A1) and λj(A4) denote the eigenvalues of

state transition matrices A1 and A4, respectively.
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When we check the stability of randomly gener-

ated chromosome inside the interval (−1, 1) using

Theorem 1, it is turned out that more than a half of

chromosomes are unstable. As a result of this fact,

a stable 2-D digital filter with small approximation

error can rarely be obtained because of premature

convergence in the design procedure. We consider

a strategy that restricts the search range of coeffi-

cients of the state transition matrix. Thus the fol-

lowing Gershgorin circle theorem [8] is introduced

to maintain enough stable chromosomes during the

design procedure.

Theorem 2 (Gershrogin Circle Theorem) If

A = (aij) is a complex square matrix and Si

is the disk in the complex plane, then all the

eigenvalues of A lie in the union of certain disks

Si (i = 1, 2, · · · , n), whose centers are the values

along the diagonal and whose radii are the sum of

the absolute values of the off-diagonal entries in a

given row.

This theorem identifies a region in the complex

plane that contains all the eigenvalues of a square

matrix A. When we check the stability of all chro-

mosomes whose coefficients of A1 and A4 are ran-

domly generated inside (−0.7, 0.7), the number of

unstable chromosomes is reduced to one-tenth, and

a stable filter with small approximation error can

be obtained as demonstrated in Figs. 1 and 2. Con-

sequently, we confine the search range of the coef-

ficients of A1 and A4 to (−0.7, 0.7) to maintain

enough stable chromosomes and to obtain a stable

filter with small approximation error.
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number of unstable chromosomes.
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6. Numerical Example

Consider the problem of designing a 2-D circularly

symmetric lowpass filter. Let the magnitude spec-

ification Hd(ω1, ω2) be given as

Hd(ω1, ω2) =



1.0, 0.0 <= r <= 0.1
0.8, 0.1 < r <= 0.2
0.44, 0.2 < r <= 0.3
0.14, 0.3 < r <= 0.4
0.03, 0.4 < r <= 0.5
0.002, 0.5 < r <= 0.6
0.001, 0.6 < r <= 1.0

(23)

where r =
√

ω2
1m + ω2

2n/π and the passband is the

region specified by r <= 0.3. The group delay is
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Fig. 3　Magnitude response of the resulting filter.

specified as

τdk
(ω1, ω2) =

{
4.0, 0.0 <= r <= 0.3
0.0, otherwise

(k = 1, 2)

(24)

and the support region S is

S = {(ω1, ω2)|ω1 = πm1/10, −10 <= m1 <= 10;

ω2 = πn/10, 0 <= n <= 10} . (25)

For the given specifications, we design a (4, 4)-

order digital filter using MATLAB running on a

XEON 3.2 [GHz] machine. The GA parameters

and the weighting factor in Eq. (21) are used as

follows:

weighting factor α = 0.6
population size N = 200
crossover rate Pc = 0.95
mutation rate Pm = 0.01
terminal condition Ctc = 500
bit length B = 16.

Figures 3, 4 and 5 show the magnitude and group

delay responses of the resultant filter. The design

procedure stops after 1,488 iterations. The CPU

time required for the design procedure is 57.71 min-

utes. Furthermore, for each generation, the cal-

culations of genetic operators (selection, crossover

and mutation operation) and the objective function

take on average 0.29 sec and 1.42 sec, respectively
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Fig. 4　Passband group delay with respect to ω1.
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Fig. 5　Passband group delay with respect to ωw..

Table 1 is given to compare the normalized ap-

proximation error analysis of our design with that

of the filter designed in [10] and [9] in both group

delay and the magnitude characteristics.

7. Conclusion

In this paper, we have proposed a GA-based de-

sign method of 2-D separable denominator state

space digital filters which meet simultaneously with

the magnitude response and a constant group delay

specifications. In this proposed approach, we have

first formulated the design problem. And then, in

order to apply the GA to the design problem, we

have presented the coding of all coefficients and an

objective function. To check the stability of the
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Table 1　Approximation error analysis.

Order εm ετ1 ετ2

our design (4, 4) 16.39% 3.48% 1.98%

design in [9] (4, 4) 15.58% 0.69% 0.69%

design in [10] (4, 4) 24.36% 9.32% 8.18%

resulting 2-D state space digital filter, we embed-

ded the stability test routine in the design proce-

dure. Therefore, the stability of the resulting fil-

ter is guaranteed. A numerical example has shown

that the normalized approximation error of the re-

sulting filter is smaller than or gives somewhat com-

parable to those of the other methods.
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