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Abstract—Innovative applications of image 
processing techniques for analysis of 
intravascular ultrasound images are presented. 
This work has two main objectives: (1) to detect 
the luminal contour which is necessary to assess 
the degree of vessel stenosis, and (2) to detect 
presence of calcification, which is an important 
information for definition of the intervention 
method. These problems were addressed using a 
combination of mathematical morphology 
techniques, fuzzy systems, and a priori 
knowledge of the problems. Encouraging results 
were found when the results were compared with 
images manually segmented by expert medical 
doctors. 
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1 INTRODUCTION 
 

The objective of this work is to develop a system 
for automatic segmentation of calcifications and 
luminal contour in intravascular ultrasound (IVUS) 
images as a tool to support coronary artery disease 
diagnosis. 

Luminal contour segmentation is important 
because the lumen area can give the medical doctor 
information about the degree of vessel stenosis. On 
the other hand, the presence or absence of calcium 
demonstrated by IVUS has been shown to be an 
important determinant of the transcatheter 
intervention success. 

However, in general, autonomous segmentation 
is one of the most difficult tasks in digital image 
processing. Segmentation accuracy determines the 
eventual success or failure of computerized analysis 
procedures. 

In this paper, as in Brusseau's2) and 
Bovenkamp's2) works, we proposed a system for 
automatic luminal contour segmentation. Unlike the 

Brusseau's system, our system is applied on images 
obtained from a rotating IVUS system due to the fact 
that these systems are largely used in clinical settings. 
Instead of a multi-agent system, as proposed by 
Bovenkamp, we used a simpler and powerful set of 
features proposed by Tuceryan3) to achieve our goal 
of luminal contour segmentation. 

Our strategy to achieve this goal is to extract 
local moment based texture features and a proposed 
pixel position feature from IVUS images to perform  
clustering on the basis of these features. 

 

2  MATERIALS AND METHODS 
In this work, we used a commercial available 

IVUS system (Clear View Ultra, Boston Scientific, 
USA). The central frequency of the rotating IVUS 
probe (Atlantis SR Pro, Boston Scientific, USA) was 
40 MHz.. 

2.1  Moments 
Our algorithm uses the moments of an image to 

compute texture features. The (p+q)-th order 
moment mpq of a function of two variables f(x,y) 
with respect to the origin (0,0) is defined as3) : 

( )∫ ∫
∞

∞−

∞

∞−
= )1(, dxdyyxyxfm qp

pq

where p,q = 0,1,2, … 
In this paper, as in Tuceryan's work3), we regard 

the intensity image as a function of two variables, 
f(x,y). We compute a fixed number of the lower 
order moments for each pixel in the input image (we 
use p+q≤  2). The moments are computed within a 
small local window around each pixel.  Given a 
window size W, the coordinates are normalized to 
the range of [-0.5 , 0.5] and the pixel is located at the 
center. The moments are computed with respect to 
this normalized coordinate system.  This permits us 
to compare the set of moments computed for each 
pixel. 

Let (i,j) be the pixel coordinates for which the 
moments are computed. For a pixel with coordinates 
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(k,l) which falls within the window, the normalized 
coordinates (xk,yl) are given by: 

Then the moment mpq(i,j) within a window centered 
at pixel (i,j) is computed by a discrete sum 
approximation of Equation (1) that uses the 
normalized coordinates: 

 
This discrete computation of the set of moments 

for a given pixel over a finite rectangular window 
corresponds to a neighborhood operation, and, 
therefore, it can be interpreted as a convolution of 
the image with a mask3). 

The set of values for each moment over the entire 
image can be regarded as a feature image. Let Mk be 
the k-th such image. If we use n moments, then there 
will be n such moment images.  In our experiments, 
we used up to second order moments. That is, we 
used m00, m01, m10, m11, m02, m20 which result in the 
images, M1, M2, M3, M4, M5, and M6 respectively. 

To enhance the discrimination power of these 
moments, we adopted the transformation used by 
Tuceryan3). Then, we introduced a nonlinear 
transformation that maps moments to texture 
features. 

Thus, we obtain the texture feature image Fk 
corresponding to the moment image Mk with mean 

kM using the following transformation: 

where: ijω is an averaging window centered 
at location (i,j) and 

LL×
σ controls the shape of the 

function. The parameters (in Eq.4): σ , moment 
window size W, and average window size L were 
chosen by gradually adjusting these values and 
observing the resultant effect in the segmented 
images. The final chosen values were W=7, L=9 and 

01.0=σ . They were determined empirically. 

 

2.2  Luminal Contour Definition 
Due to the encouraging results obtained by 

Tuceryan3) , the theory of moment based texture 
segmentation was applied to the problem of luminal 
contour detection in IVUS images. The system 

proposed in this paper is comprised by the following 
modules. 
Input image. The input image is the original image 
obtained from the IVUS system described in the 
beginning of this section. 
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Feature extraction. The feature extraction module 
is in charge of extraction of the transformed versions 
of the moments, ,6,,2,1; K=kFk  and the radial 
distance R presented graphically in Fig.1.  
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kpq yxljkifm In this work, we define the radial distance R as the 

distance from the central pixel of the image and the 
position of the pixel P under consideration. This 
distance R is normalized and becomes the seventh 
feature used in the following clustering of the input 
image pixels. The radial distance R is of fundamental 
importance because it helps pixels that are at similar 
distance from the center of the image to be included 
in the same cluster if they have similar texture 
features. The effect of using these texture and 
position features is that the clusters become 
organized in regions similar to concentric rings 
around the central pixel. This is associated with 
physiological structure of the blood vessels as 
represented in Fig.1. Thus, these seven features are 
used to comprise a feature vector for each pixel of 
the image.  
Clustering. Based on their feature vectors, the input 
mage pixels were clustered in this module using the 
Fuzzy C Means algorithm4) . The chosen number of 
clusters was four: one cluster for the region outside 
the vessel, one for the region between the adventitia 
and intima, one for the lumen and another one for 
the catheter zone.  
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Fig.1 – Illustration of a cross section of a blood 
vessel  

Morphological contour smoothing. In order to 
reduce the irregularities of the borders as well as 
some small regions around the borders, a 
morphological filtering is done prior to boundary 
detection. This filtering is performed through the 
application of opening and closing morphological 
operations with a disk structuring element of size 3. 

Boundary detection. After the clustering and 
contour smoothing, the images had very well defined 
regions that could have their contour easily detected 
by traditional edge detection methods. In this system 



we used the Sobel operator due to its simplicity and 
efficiency. 

 
Fig.2 – Example of Cartesian coordinate system 
image (A) and its corresponding polar coordinate 
system version (B) 
Output image. An example of the final output 
image can be observed in Fig.4(A). 

2.3  The Guide Wire Shadow Problem 
Sometimes due to the presence of the guide wire a 

region of the input image becomes shadowed and 
then contains no texture information. This may 
causes segmentation error. To solve this problem we 
proposed a contour correction procedure comprised 
of the following steps: 
1) Convert the image with segmentation error from 
Cartesian coordinate system to polar coordinate 
system.  An example of this process is shown in 
Fig.2. 
 

Fig.3 – Example of the search for the guide wire 
shadow position in polar coordinate system image 
based on the values of mean gray level and standard 
deviation of each column. 

2) Automatically find the guide wire shadow. This 
step is carried out through the calculus of the mean 
gray-level and standard deviation of every column of 
the polar coordinate system converted image. The 
column which contains minimum value of the 
product of the mean gray-level by standard deviation 
is assumed to be the position of the guide wire 
shadowed region as illustrated in Fig.3. The catheter 
region was ignored during this process to avoid the 
influence of the ring-down artifact. 
3) Erase the contour wrongly drawn in the guide 
wire shadow region and draw a new contour in the 
erased region through linear interpolation. 
4) Convert the corrected image back to the 
Cartesian system. 
 
3.  RESULTS AND DISCUSSION   I 

Using the system presented above, tests were 
done with 15 in vivo coronary IVUS images from 
different patients. High correlation coefficients 
between the luminal contour automatically and the 
contour manually detected were found. These 
correlation coefficients values revealed preservation 
of standard deviation (0.92), mean gray level (0.89), 
and area (0.87) in the regions automatically 
segmented. An example of the results is shown in 
Fig.4 together with the image segmented by a 
medical doctor for comparison. 

Our preliminary tests suggest that the moment 
based texture features together with the radial 
distance are feasible components for a feature vector 
in IVUS image segmentation when the aim is to find 
the luminal contour. A contour correction procedure 
based on the mean gray level and variance of each 
column of the polar coordinate version of the input 
image was presented as a feasible solution for the 
problem of error generated by the guide wire 
shadow. 

Fig.4 – Example of luminal contour detection. (A) 
and (B) are the same images obtained from patient A. 
(A) Automatically defined contour. (B) manually 
defined contour 
 
 



4.  CALCIFICATION DETECTION 
One of the characteristics of the calcification 

regions is that they usually present high intensity 
echo for IVUS images. This fact makes it possible to 
segment calcified regions by gray level threshold 
techniques. However as the intensity level change 
from image to image it is quite difficult to find a 
single threshold level that could provide an accurate 
segmentation for a large group of images. Thus, it is 
necessary to adapt the threshold level to every single 
image. 

4.1  Adaptive Threshold Estimator 
Otsu5) developed an optimal threshold selection 

method based on the maximization of the 
separability of the resultant classes. Thus, due to its 
simplicity and efficiency Otsu's method was used as 
threshold estimator in this segmentation algorithm. 

The process of threshold selection presented is 
iteratively used to automatically generate threshold 
values for multiscale segmentation. For such 
automatic process, the following algorithm was 
implemented: 

Step 1: Compute the histogram. 
Step 2: Compute the optimal threshold. 
Step 3: Compute a new histogram for the image with 
gray levels greater than the threshold. 

Step 4: Go to step 2 
After perform several tests, it was observed that 

two iterations of the above algorithm were sufficient 
to obtain an approximate segmentation of the regions 
of calcification that will be considered region of 
interest (ROI). 

4.2  Identification of Calcification from the ROIs 
Together with the intensity, another characteristic 

of the calcification regions is that they are usually 
followed be an acoustic shadow due to the strong 
reflection of the ultrasound bean in these regions. 

Fig.5 – Example of identification of calcification 
acoustic shadow . 

Thus an efficient way to decide whether a given 
ROI is a calcification region or not is through 
analysis of the region posterior to this ROI. As 
shown in Fig.5. 

We can observe in Fig.5 that the region of 
calcification (ROI 2) is followed by an acoustic 
shadow and then will present a level for median of 
the gray level values (in the dotted line) lower then 
the one of ROI 1. 

Thus, in order to detect the acoustic shadow and 
then determine whether a given ROI is calcification 
or not, the following algorithm was constructed: 

Step 1: Determine the centroid C of the ROI. 
Step 2: From the centroid of the ROI to the outer 

boundary of the image, calculate the median gray 
level value Med. 

Step 3: If 
medTMed ≤ than classify the ROI as 

calcification. Else, classify ROI as non-calcification  
Tmed was chosen based on tests with several 

images. 

 

5.   RESULT AND DISCUSSIONS  II 
 
Using the algorithms for adaptive thresholding 

and acoustic shadow detection tests were done. 
Varying the threshold Tmed in the range from 10 to 
200 and observing the number of true positive and 
false positive, a receiver operating characteristic 
(ROC) curve was constructed. It is shown in Fig.6. 
The area under the curve (AUC) is equal to 0.87. For 
the chosen Tmed=25 the rate of true positive was 84% 
and the rate false positive was 12%. Thus, we had 
sensitivity = 0.84 and specificity = 0.88. 

 

6.  CONCLUSIONS 
 

Otsu's algorithm for threshold selection has been 
successfully applied for segmentation of 
calcification regions in IVUS images. However, 
some bright regions of normal tissue are also, often, 
segmented. Then an algorithm for identification of 
the ROIs that are really regions of calcification was 
implemented taking as identification criteria the 
presence or absence of acoustic shadow. A ROC 
curve was plotted showing the performance of the 
proposed algorithm. 
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  A moment based texture feature together with a 
position feature presented encouraging results in 
luminal contour detection . As future works we plan 
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