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1. Abstract

This paper proposes to employ an empirical char-
acteristic function based non-Gaussianity measure
as a one-unit contrast function for independent com-
ponent analysis. This non-Gaussianity measure is a
weighted distance between the characteristic func-
tion of a random variable and a Gaussian charac-
teristic function at some adequately chosen sample
points. Independent component analysis of an ob-
served random vector is performed by optimizing
the above mentioned contrast function (for differ-
ent units) using a fixed-point algorithm. Moreover,
in order to obtain a better separation performance,
we employ a mechanism to choose appropriate sam-
ple points from an initially selected sample vector.
Finally, some computer simulations are presented
to demonstrate the validity and effectiveness of the

proposed method.

2. Introduction

In the problem of blind source separation (BSS),
we observe m signals X(k) = [T1(k), Z2(k), - -
at different sensors that are generated by the fol-

lowing multi-input multi-output system
x(k) = As(k) +v(k), (1)

where k is a (discrete) time index, A € R™*"
(m 2 n) is a full rank mixing matrix, s(k) =
[s1(k), s2(k),+ -+ ,8,(k)]T is the vector of original
source signals, and 7(k) = [71(k), Da(k), -+ , T (k)]T
denotes the vector of (Gaussian) noise signals present
at m sensors. The objective of BSS is to estimate
the input vector s(k), given only the observed vec-
tor X(k), and certain assumptions about the statis-
tics of sources. The primary task in BSS is to
obtain a de-mixing matrix W € R™ ™ that esti-
mates the pseudo-inverse (A1) of the mixing matrix
with the exceptions of some scaling and permuta-

tion ambiguities 1). The output of this de-mixing
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system can be written as

(k) = Wx(k) = WAs(k) + Wo(k),  (2)
= Hs(k) + Wo(k), (3)

where H = WA € R™ " is the global transforma-
tion matrix from s(k) to (k). Once an unbiased
estimate of At is available, we can employ some
auxiliary filters or optimal nonlinear estimators in
order to reconstruct the sources from the observed
data (in the presence of noise) 1 2),

Independent component analysis (ICA) (see 1))
is a statistical technique that can be used for BSS,
provided the sources are statistically independent
and at most one source is Gaussian. Although,
there exist many approaches for ICA, our main
concern in this paper is ICA by maximizing non-
Gaussianity. In order to implement the maximum
non-Gaussianity approach, we require some quan-
titative measure of non-Gaussianity such as negen-
tropy. The well known FastICA algorithm (see 3))
maximizes certain approximations of negentropy in
order to perform ICA. Although, practically any
smooth non-quadratic function can be employed
for this purpose 4), the optimal nonlinear functions
depend on the (unknown) pdfs of sources 3). This
implies that if some preselected (parametric) non-
linearity differs considerably from the optimal func-
tion, the FastICA algorithm may perform poorly
for these sources.

It is therefore necessary to employ some direct
measure of non-Gaussianity that works well for sig-
nals with wide range of pdfs. In this paper, we
propose to utilize an empirical characteristic func-
tion (ecf) based non-Gaussianity measure (contrast
function) in order to perform ICA. It may be noted
that the ecf, being the Fourier-Stieltjes transform of

the empirical distribution, retains all the informa-

tion about the data. Consequently, the estimation
methods based on the ecf can be made as efficient
as the likelihood-based approaches 5. In ICA es-
timation, the ecf has already been used in 6) to
construct an objective function for measuring sta-
tistical independence between random variables. In
this contribution, we employ the ecf to (directly)
measure the distance of an arbitrary empirical dis-
tribution from the Gaussian distribution (at some
adequately chosen sample points). Such a contrast
function can be easily maximized by using a fixed-
point algorithm. Furthermore, we also suggest a
procedure for choosing appropriate sample points
(from an initially chosen sample vector) in order
to obtain somewhat better separation performance.
Finally, some simulation results are given in order
to show that the proposed approach works well for

both symmetric and asymmetric distributions.

3. Pre-whitening

Pre-whitening is a commonly employed pre-processing

technique in many ICA algorithms including JADE
7) and FastICA 3). 1t is mainly used to reduce
the complexity of the BSS problem. Considering
the noisy mixture model given by Eq. 1, a robust
pre-whitening stage linearly transform the observed

vector into another n-dimensional vector x(k) =

Qx(k), given by
x(k) = QAs(k) + Qu(k) = As(k) +v(k), (4)

where Q € R™*™ is a whitening matrix, v(k) =
Qu(k) is the transformed noise vector, and A =
QA € R™" is an orthogonal matrix i.e. AAT =
I,. Therefore, in order to achieve BSS, we are now
required to obtain an orthogonal de-mixing matrix

W that estimates A~! = AT. The corresponding
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output vector is given by
y(k) = W(k). (5)

For simplicity, we assume that m = n, and the
covariance matrix Cy of 7 is known. In this case, a

robust pre-whitening matrix can be obtained as 8)
Q=(Cx - Cp)™"/?, (6)

where C¢ = EXXT is the covariance matrix of X.
It can be easily seen from Eq. 4 that the covariance

matrix Cx of the transformed vector x is given by
Cx = In + Cv, (7)

where C, = QCyQT is the covariance matrix of v.

4. ICA by Maximizing Non-

Gaussianity

ICA is usually achieved by minimizing a con-
trast function that attains its minimum value when
the output signals {y; = wjx}{, become mu-
tually statistical independent, where w? denotes
the ith row of the de-mixing matrix. A natural
choice for such a contrast function is mutual infor-
mation, which is considered as the most satisfying
information-theoretic measure of statistical depen-
dence between random variables. In case of the
output vector given by Eq. 5 (with WW7T =1,,),

it leads to the following contrast function 1)
n
iy, W) = H(y) — Hx), 8)
i=1

where H(y;) = —FElog(g;(y;)) is the entropy of y;,
gi(y:) is the pdf of y;, and H(x) is the entropy of
x. After some simple manipulations, we can write
Eq. 8 as 3)

n

iy, W) =C - J(w), 9

i=1

where J(y;) is the negentropy of y; and C is some
irrelevant constant. Negentropy of a random vari-

able u is defined as
J(U) = H(ugauss) - H(u)’ (10)

where ugaue denotes a Gaussian random variable
with the same variance as u. Negentropy is a mea-
sure of non-Gaussianity in the sense that it is al-
ways nonnegative, and attains its minimum value
(of 0) if and only if u has a Gaussian pdf. There-
fore, in the light of CLT, Eq. 9 implies that ICA
by minimization of mutual information is equiva-
lent to finding directions in which the outputs y;
are uncorrelated and maximally non-Gaussian.
Finally, it may be noted that negentropy is dif-
ficult to estimate from its definition since it re-
quires an estimate of the pdf. However, we can
still perform consistent ICA estimation by replac-
ing negentropy by any other (good) measure of non-
Gaussianity. The FastICA algorithm, for instance,
employs certain simpler approximations of negen-
tropy to perform ICA. These approximations can

be written as 4)
j(u) X [E{G’(u) - G(ugaum)}P, (11)

where G is any smooth no-quadratic function. Some

choices of these nonlinear functions include log cosh(u),

exp(—u?), u%, and u3. Nevertheless, the best per-
formance is obtained if we choose G proportional
to the log of the pdf of u 3). This implies that any
fixed general purpose function may not work well
for all the pdfs. We can overcome this drawback
by employing more than one (appropriate) nonlin-
earities or utilize a non-Gaussianity measure that

works well for different pdfs.



5. The Proposed Approach

5.1 An Empirical Characteristic Func-

tion based Non-Gaussianity Mea-
sure

The characteristic function (cf) of a random vari-
able u is defined as the Fourier-Stieltjes transform
of its cumulative distribution function (cdf),

oo
o(u, \) = /_ exp(i)dF(w), (12)
where j = /=1, ) is a real valued frequency pa-
rameter, and F(u) is the cdf of u. The cf can be
easily estimated from the data by replacing it with
the ecf. Given N independent samples {u(k)}_,,
the ecf is defined as

N
en(u,)) = Jivzexp(jxu(k)). (13)
k=1

From the above equation, we see that ¢y (u, ) is a
sum of bounded i.i.d. random variables. Therefore,
it follows from the strong law of large numbers that
cn(u, A) converges almost surely to c(u, \) for every
A. This implies that ¢y (u, A) is a consistent esti-
mate of ¢(u, ) VA. Furthermore, it is shown in 9)
that as a random process, Yy () = v N(cn (u, A) —
c(u, \)) converges weakly to a zero mean complex

Gaussian process satisfying Y(A\) = Y(—) and
EY(M)Y (A2) = c(A1 + A2) — c(A1)e(A2).  (14)

In order to measure non-Gaussianity by ecf, we
note that cn(u,]) is the Fourier-Stieltjes trans-
form of the empirical cdf Fy(u) = P(u)/N, where
P(u) is the number of u(i) £ u with 1 £ i < N.
This implies that there exists a one-one correspon-
dence between Fi(u) and cy(u,A). More specifi-
cally, if u; and u, are two random variables then we
have Fy(u1) = Fn(u2) if and only if ey (u1,A) =
en(uz, A) VA. Consequently, we can utilize a dis-

tance measure in the ecf domain to determine how

far two distributions are from each other. In par-
ticular, we employ a weighted distance between
cn(u, A) and c(ugayss, A) in order to obtain a non-
Gaussianity measure. Here, c(ugauss, ) = exp(—A?/2)
is the cf of the Gaussian distribution and we have
assumed that both u and ugayes have unit variances.

Such a distance measure, in comparison to ap-
proximations of negentropy given by Eq. 11, is ex-
pected to work for wider range of pdfs. For in-
stance, it is possible to observe a non-Gaussian
random variable u that has a zero kurtosis value
but nonzero higher order cumulants (or the pdf of
u is asymmetric). For these signals, kurtosis will
not work as a measure of non-Gaussianity. On the
other hand, as indicated above, ¢y (u,\) becomes
equal to ¢(Ugauss, A) VA only when u has a Gaussian
pdf.

If we use an L, type distance measure, the re-

sulting test statistics can be written as 10)

T (u) = / " B0V | en (1 2) — cltigauees A) |2 A,
-~ (15)
where 3()) is a nonnegative integrable weight func-
tion. More importantly, the test statistics of the
form given by Eq. 15 have shown to be consistent
against general alternatives 10). The weight func-
tion in Eq. 15 is chosen so that the integral remains
bounded and yields a closed form expression. A
convenient choice for such a weight function is the

pdf of a standard Gaussian distribution i.e.

BC(N) = exp(—A?/2). (16)

With this weight function, we can write the test

statistics given by Eq. 15 as (see 5))

N N
VIR YD exp(—(u(k) — u(l)?/2) -
k

=1 [l=1

TN (u)

N
2V Y exp(—u(k)?/2) + v/2r/3. (17)
k=1
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The above statistics can now be employed as a
non-Gaussianity measure in order to perform ICA.
More specifically, assuming that the observed vec-
tor is already pre-whitened, we can obtain a de-
mixing matrix by maximizing the following objec-

tive function with respect to W
n
BF(¥) =D TN (v0)- (18)
i=1

A simple gradient algorithm can be used for this
purpose. However, it may be noted that an op-
timization of the above objective function will be
computationally complex since an evaluation of the
test statistics T (y;) requires o(N?) computations
in each iteration. We can overcome this drawback
by employing the following simple weight function
M
OVEDINCEPH) (19)
i=1
where §(.) is the delta function and {\;}}; are
some appropriately chosen M sample points. By
substituting the above weight function in Eq. 15,
we get the following sum of squares test statistics
M
Ta(uA) =Y | en(u,Ai) = cltgauss; M) [, (20)
i=1
where A = [A1,---,Am]7 is the vector of sample

points. The above equation can also be written as

M
Tj:’;(u,)\) = Z(c%(u7)‘i)_exl)(_)‘z?/2))2

=1
M
+ ch(u, )‘11)2, (21)
i=1
where ¢ (u, \;) and c§%(u, \;) are the real and imag-

inary parts of ¢y (u, A;), respectively, i.e.

N

@) = Dcoshau®), (22
. z;l

ywA) = % sin(u(d).  (23)
i=1

The criterion given by Eq. 20 can be consid-

ered as a special case of weighted sum of squares

test statistics 11) with weighting matrix equal to
Identity. We can also utilize a similar statistics by
obtaining the weighting matrix from an estimate of
the covariance structure given by Eq. 14. However,
for simplicity we avoid the estimate of such a ma-
trix. This approach is justified if N is sufficiently
large or the sample points are chosen adequately.
In Section 5.3, we consider the effect of choosing
different sample points on the (separation) perfor-
mance for some distributions.

Next, we slightly modify the distance measure
given by Eq. 20 in an attempt to remove the ef-
fect of additive Gaussian noise. In order to do so,
let us consider that the observed random variable
contains a noise component 7 i.e. u =uj + 7. As-
suming that u; and 7 are statistically independent,

the cf of u is given by

c(u, A) = c(u1, Ne(n, A) = c(u1, A) exp(—o2A?/2)
(24)
where 02 = o2 — 1 is the variance of 7. Conse-
quently, the effect of noise can be reduced by re-
placing ¢y (u, Ai) in Eq. 20 by exp(02A?/2)en (u, Ai).
Accordingly, the objective function in Eq. 21 mod-
ifies to

M
T (w,A) = 3 exp(~X2) (R (u, As) exp(02A2/2) — 1)?

i=1
M

+ ) exp(—A?) exp(oZAf)ci (u, Mi)®.  (25)

=1

5.2 Optimization Method

Based on the above formulation, we employ the
non-Gaussianity measure Tx* (y;,A) as a one-unit
contrast function in order to obtain a single in-
dependent component. In particular, we derive
a simple fixed-point iterative algorithm for maxi-

mizing Tﬁl(yi,,\) under the constraint ||w;|| = 1.
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Such a constraint optimization problem can easily
be solved by using the method of Lagrange multi-
pliers.

To begin with, we define the Lagrangian as

1 1
L(wi,A) = 5 T3 (v, ) = 57(Iwil* = 1), (26)

where 7 is the Lagrange multiplier that is computed
so0 as to satisfy the constraint equation. According
to the Lagrange conditions, the optima of the con-
straint optimization problem are obtained at the
points where the gradient of L(w;, A) is zero. After
some simple calculations, we can write the gradient

of L(w;,A) as

M
Vw.L(w;,A) = Zal(yi,/\p)Eg1(yi,/\p)x+
p=1
M

Z a2(yi, )‘p)EQZ(yia Ap)x - Twia(27)

p=1
where the four quantities ai, oz, g1, and g2 are

defined as

01 (yi, Ap) = exp(—A2) [ch (i, Ap) exp (o7, A2)

- exp(aZ,A2/2)], (28)
o (%, Ap) = exp(—A2) exp(0Z, A2) e (¥i, Ap), (29)
91 (%1, Ap) = —Ap sin(Apys) + A2cN (i, Ap)ti, (30)

g2(Yis Ap) = Ap cos(Apys) + )\f,c?,(y,-, Ap)yi- (31)

The Lagrange multiplier 7 can easily be computed

from Eq. 27 and is given by

M
o= Y oy M) Ea (i, Mo)ui

p=1

M
+ D0y M) Eg2(uis Mp)yss  (32)

p=1
In order to solve the problem by an approxi-
mate Newton method, we evaluate the Jacobian of
L(w;,A) at the optimum w}. After some straight

forward calculations, and using the approximations

ExxT cos(\pyi) = E cos(A\py;)In and ExxT sin(A,y:)

= Esin(Apy:)In 3), the approximate Newton itera-
tion reduces to the following fixed-point algorithm

M
W;‘- Zal(yia)‘p)Egl(yi,’\P)x
p=1

M
+ 202('.'/% AP)EQZ(yia )\p)x> (33)
p=1

.. (34)

W ”w—j'||’
where an explicit normalization of the weight vec-
tor avoids the computation of 7. In order to imple-
ment the above algorithm, we replace the expecta-
tions in Eq. 33 by their sample estimates.

The one-unit fixed-point algorithm described by
Eq. 33-34 is meant to obtain a single independent
component. More than one independent compo-
nents (or rows of the de-mixing matrix) can be esti-
mated by running the same one-unit algorithm sev-
eral times but ensuring that different weight vectors
are orthogonal to each other. A deflation approach
or a symmetric orthogonalization approach can be

employed for this purpose 3).

5.3 Choice of Sample Points

It may be noted that the non-Gaussianity mea-
sure given by Eq. 25 is only defined at some finite
set of sample points. An adequate choice of these
sample points can increase the efficiency of the cor-
responding optimization algorithm. To illustrate
this, let us consider a special case when M = 1,
and the sources are symmetric so that we only uti-
lize the first term in Eq. 25. The distance measure
given by Eq. 25 then becomes equivalent to a one-
unit contrast function of the form given by Eq. 11
with

G(u) = cos(Au). (35)
This family of contrast functions is analyzed math-

ematically in 12) In particular, the trace of the
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asymptotic covariance matrix of the estimator w;

can be written as 12)

o B{g¥s)} — (B{sig(s)})?
Ve = Ol = E gl — g (s}

where g(.) is the derivative of G, and C;(A) is an

(36)

irrelevant constant depending on the mixing matrix

A. With G(s;) = cos(\s;), we have

Va(A) = Ci(A)

[250) 1 ac(s;, )]
(37)
In Figure 1, we plot Vg(\)/C1(A) for two well
known distributions including the Laplace distribu-
tion and the Uniform distribution. The cfs of these
distributions (with zero means and unit variances)

are given by

2
C(uLaplacea )‘) 24_—)\2’ (38)
c('UfUniforma )\) SIH\(/—% . (39)

From Figure 1, we note that in case of a Laplace

[0.5 - 0.56%(si,20) — (25452 2]

VG(M/C I

distribution, the asymptotic variance decreases sharply

and reaches its minimum value as X is increased
from 0 to 2. Although, for A > 2 the asymptotic
variance increases again, it remains close to its min-
imum value in the neighborhood of A = 2. On the
other hand, for a Uniform distribution, the asymp-
totic variance is minimized by choosing a very small
value of A near the origin. In addition to this,
the asymptotic variance now increases as ) is made
large.

From the above examples, it is evident that a
good choice of A\ depends on the pdfs of sources. In
general, a relatively large A is preferable for super-
Gaussian signals as compared to sub-Gaussian sig-

nals. Pursuing this further, we can improve the

separation performance by selecting appropriate sam-

ple points from some initially chosen sample vector.

(@) (®)

Fig. 1 The plot of Vg()\)/C1(A) as a function
of X for (a) the Laplace distribution, and (b) the
Uniform distribution.

(A

(2)

Fig. 2 Characteristic functions of some distribu-

tions with kurtosis values shown in the legend.

Such a selection can be (roughly) made by consid-
ering the cf of the output y;. As shown in Figure
2, the cf of a super-Gaussian (kurtosis> 0) / sub-
Gaussian (kurtosis< 0) random variable usually de-
cays slower / faster than a Gaussian cf. There-
fore, in general, we will use sample points in a lim-
ited range around zero i.e. 0 < A\; £ 1. How-
ever, if ¢% (yi, Ap)|1< Ap<2 is sufficiently larger than
exp(—A2/2), we also add A, to the sample vector.
In case of asymmetric distributions, the situa-
tion is somewhat more complicated since sine and
cosine functions measure two different characteris-

tics of a distribution. Nevertheless, we have found

through computer simulations that in case of asym-
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metric distributions, sample points in a small range
around zero yields good performance.

In the light of above discussion, we initially select
sample points such that 0 < A, £ 1. Subsequently,
more sample points are added provided |c3 (i, Ap)|
is sufficiently small and Cm&(yi,)\p) is larger than
exp(—A2/2) with 1 < \p £ 2.

6. Simulation Results

In this section, we give some simulation results in
order to demonstrate the effectiveness of the pro-
posed method. As described previously, we con-
sider the noisy mixture model given by Eq. 4. This
is equivalent to assuming that an estimate of the
noise covariance matrix is available so that we can
perform the robust pre-whitening as described in
Section 2.

The separation performance is evaluated by the
following performance index

PI= ( ) ;; (maxj W 1) (40)
where h;; is the ijth element of the global trans-
formation matrix H. The above performance index
effectively measures the inverse of the average out-
put signal to noise ratio. Therefore, a small value
of PI implies a good separation performance.

Experiment 1: In the first computer sim-
ulation, we evaluate the performance of the pro-
posed approach in the presence of Gaussian noise.
Five sources are mixed together using a randomly
chosen mixing matrix A € R%%5, The covariance

matrix of the noise vector is given by
Cy = 0.115. (41)

A comparison of the proposed method is per-

formed with the modified FastICA algorithm 8) in

which Gaussian moments (defined as the expecta~
tions of Gaussian functions or their derivatives /
integrals) are used as one-unit contrast functions
in order to obtain an unbiased estimate of W in
the presence of Gaussian noise. The modified one-
unit algorithm (with bias removal) can be written
as

wh = Ehk(y)x —

+
Wi

Wil

(I, +Cu)Eh (yz)w'n(42)

W;

(43)

where some choices for the nonlinearities hj include
hi(u) = tanh(u), ha(u) = uexp(—u?/2), and ha(u) =
«® 8). For ease of reference, we call this algo-
rithm as M-FastICA (h;) i.e. Modified FastICA
algorithm with nonlinearity h;.

The results of this simulation are shown in Fig-
ure 3. In particular, Figure 3 (a) plots the evolu-
tion of performance index (averaged over 100 re-
alizations) for various methods when sources are
generated from the Uniform distribution. Figure
3(b) shows the same plot for Laplace distributed
sources. From these figures, we see that the pro-
posed approach gives a slightly better performance
as compared to M-FastICA with different nonlinear
functions.

Experiment 2: In the next simulation, we
would like to separate sources consisting of sig-
nals with asymmetric distributions. In this com-
puter experiment, we compare our approach with
the standard FastICA algorithm (with different non-
linear functions). Again, we mix five sources by us-
ing a randomly chosen mixing matrix. Figure 4 (a)
shows the evolution of performance index for vari-
ous methods when sources are distributed accord-
ing to Rayleigh(1) distribution. It is a skewed dis-
tribution, which in employed for instance in com-

munications to model the envelope of the fading
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- = = M-FastICA(cubic)
,,,,,, M—FasUICA(tanh)
1 Y M-TFastICA(Gauss)

Y — Proposed

5 0 15 20 25
Iterations
(a)

= = = M-FastICA(cubic)
« M=FastICA(tanh)
-= = M-TastICA(Gauss)
— Proposed

—5F

0 5 0 15 20 25
Iterations

(b)

Fig. 3 Adaptation dynamics of average performance index for various methods in Experiment 1 when
sources are (a) Uniformly distributed, and (b) Laplace distributed.

= = =FastICA(cubic)
—e—FastICA(skew)

FastICA(tanh)
== FastICA(Gauss)
—Proposed

8 12 16
Iterations

(a)

= = =FastICA(cubic)

—o—FastICA(skew)
+-+ FastICA(tanh)
== FastICA(Gauss)

.10 15
Iterations

(b)

Fig. 4 Adaptation dynamics of average performance index for various methods in Experiment 2 when
sources are (a) Rayleigh(1) distributed, and (b) Poisson(0.5) distributed.

channel. Similarly, Figure 4 (b) displays the evo-
lution of performance index when sources are gen-
erated from Poisson(0.5) distribution. The Poisson
distribution, in addition to be skewed, is also not
absolutely continuous.

From Figure 4, we see that odd nonlinearities

may perform poorly for the above mentioned sources.

Although, in case of Poisson distribution, the cu-
bic nonlinearity gives satisfactory results, its per-
formance is much inferior to that of the ecf based
non-Gaussianity measure and the skew nonlinear-
ity. From this simulation, we observe that only a
single nonlinearity may not work well for all the

pdfs. Even though, the skew function performed

very well for the asymmetric sources, we do not ex-
pect it to work for symmetric distributions. On the
other hand, the ecf based non-Gaussianity measure

has the potential to work for many different pdfs.

7. Conclusion

In this paper, we have employed an ecf based
non-Gaussianity measure as a one-unit contrast func-
tion in order to extract statistically independent
signals from their linear mixtures. This objective
function is optimized by employing a simple fixed-
point algorithm. Some computer simulations are

presented in order to compare the separation per-
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formance of different non-Gaussianity measures. These

simulation results show that provided the sample

points are chosen properly, the ecf based contrast

function has the potential to work well for wide

class of probability distributions. The selection of

adequate sample points can be avoided if we utilize

the non-Gaussianity measure described by Eq. 15,

since it considers the whole frequency range. Ob-

taining an efficient algorithm for the optimization

of this measure is a task of future work.
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