長方形スキャンによる画像再構成方式の提案

A Proposal of Image Reconstructing Method Based on Rectangular Scanning

齋藤昭宏*,田山典男*,光安康人*,加藤弘典**,多田明広*,栗田宏明*,佐藤宏明*

Akihiro Saito^{*}, Norio Tayama^{*}, Yasuto Mitsuyasu^{*}, Hironori Kato^{**}, Akihiro Tada^{*}, Hiroaki Kurita^{*}, Hiroaki Sato^{*}

*岩手大学工学部,**富士通ゼネラル

*Faculty of Engineering, Iwate University, **FUJITSU GENERAL LIMITED

キーワード: CT (Computer Tomography), 画像再構成 (Image reconstruction), ウェーブレット (Wavelet), 一様透過性 (Nature to transmit uniformly), 長方形スキャン (Rectangular scanning)

連絡先: 〒020-8551 岩手県盛岡市上田4丁目3番5号 岩手大学 工学部 電気電子工学科 田山研究室
田山典男, Tel. & Fax.: (019)621-6382 E-mail: tayama@pipe.elc.iwate-u.ac.jp

1. はじめに

医療分野¹⁻³⁾で大いなる貢献を果たしているX線 CT装置では専らFBP原理が採用されており,400 ~1000の多数方向からの投影データを用いている. これは高精細な画像を再構成行うためであり,装 置が大がかりで高価になっている.

一方産業分野では,工場や空港でのベルトコン ベアなどの流れ工程において,対象物体を非破壊 的検査するために3次元物体として可視化したい という要求が高まっている.そのためには,導入 するコストが低く,高速に処理できるコンパクト な産業用CT装置の開発が求められている.

本研究では,対象空間に標本化モデルを導入し, ウェーブレット標本化関数を用いることで局所領 域による画像再構成法を検討している⁴⁻⁹⁾.X線源 が長方形の周辺上を移動して投影データを採取す る長方形スキャン方式を提案する.長方形スキャン によるファンビーム状の投影データから平行ビー ム状の投影データへ変換する方法を示し,正しく 変換され画像再構成されることを検証する.

2. FMR法

まず画像再構成の基礎となるFMR(Fast Model Reconstruct)法について説明する.

画像を対象とする2次元対象空間において,遮断 空間角周波数 ω_m よりも高い周波数成分を制限した 標本化定理を満たす濃度値分布モデルを導入する. このような条件を満たす対象領域の連続空間では, 任意点の濃度値をf(x, y)とすると, $t = \pi/\omega_m$ 間隔 以下で標本化された各標本点の濃度値 $f(x_i, y_j)$ と, 標本化関数S(x)を用いて記述することができる. 対象空間領域を $(n \times n)$ の有限領域とすると,f(x, y) は標本化定理から次のように近似できる.

$$f(x,y) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(x_i, y_j) \cdot S(x - x_i) \cdot S(y - y_j) \quad (1)$$

ここで透過ビーム上の各点での濃度値f(x_i, y_j)を 透過ビームに沿って線積分した値は,投影値pに等 しくなり,式(2)が成り立つ.

$$p = \int_{0}^{L} f(x, y) \, \mathrm{d}l$$

=
$$\int_{0}^{L} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(x_i, y_j) \cdot S(x - x_i) \cdot S(y - y_j) \, \mathrm{d}u$$

(2)

ここで透過ビームが対象空間へ侵入する点から脱 出する点までの長さを*L*として,侵入点から透過 ビーム上のある点までの長さを*l*とする.

透過ビームごとに式(2)が成り立つので,これ らの連立線形方程式を行列の形で表現することに する.このように定式化すると,投影値ベクトル $p = (p_m)$ は,影響の度合いを表す線積分影響係数 行列 $C = (C_{mn})$ と,標本点濃度値ベクトル $f = (f_n)$ により式(3)のように表される. $e = (e_m)$ は誤差ベ クトルである.

$$\boldsymbol{p} = \boldsymbol{C} \, \boldsymbol{f} + \boldsymbol{e} \tag{3}$$

この式(3)の影響係数行列Cは $M \times N$ 行列であ り,m行n列の要素が線積分影響係数 C_{mn} である. Cは透過ビームの形状や投影方向数,投影方法な どから定まるものである.この影響係数行列Cを, $M \times M$ 直交行列Uと $M \times N$ 対角行列 Λ と, $N \times N$ 直交行列Vの転置行列 V^t とに分解することを特異 値分解という.

$$\boldsymbol{C} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{V}^{\boldsymbol{t}} \tag{4}$$

式(4)の行列Aの対角要素は非負値であり,降順に 並んでいる.この各要素を特異値という.

式(3)において,再構成の誤差二乗和(||*e*||²)を最 小にする解*f*を求める再構成問題は,種々の一般 逆行列のうちでMoore-Penrose型行列¹⁰⁾を求める 問題として定式化できる.従って,行列*C*がラン ク落ちしているときには式(5)として表される.求

Fig. 1 Sinc**関数**S(x)

Fig. 2 Sinc関数のフーリエ変換 $\hat{S}(\omega)$

める濃度値ベクトルfは式(6)になる.

$$C^+ = V \Lambda^+ U^t \tag{5}$$

$$\boldsymbol{f} = \boldsymbol{C}^+ \, \boldsymbol{p} \tag{6}$$

このとき最小二乗解が複数あるので,濃度値ノル ム||f||が最小となるものを選ぶ.fは最小二乗・最 小ノルム解と呼ばれる.式(5)のΛ⁺は,Λの転置 行列の対角要素を逆数に置き換え,さらにランク 落ちの起こった対角要素を0にしたものである.

これらC⁺は定数行列であり,あらかじめ計算 して蓄えておくことができる.このようにして得 られた定数行列C⁺と計測した投影値pとを掛け合 わせるだけで,最小二乗・最小ノルム解である濃 度値ベクトルfを求めることができる.

3. ウェーブレット標本化関数

これまで標本化画像再構成においては,標本化 関数としてShannonの標本化関数(Sinc関数)を用 いてきた.しかしFig.1に示すように影響領域が局 在化しておらず,有限領域で打ち切って使用する と誤差が大きくなるという問題があった.

これに対して, Meyerスケーリング関数 $\phi(x)^{11}$ では振動の幅が狭く局在性がよいことが分かって

Fig. 3 Meyerスケーリング関数 $\phi(x)$

Fig. 4 Meyerスケーリング関数のフーリエ変換 $\hat{\phi}(\omega)$

いる.そこでこのMeyerスケーリング関数に対し て,標本化関数の性質を持たせたウェーブレット 標本化関数を定式化していくことにする.

まずMeyerウェーブレットでは,スケーリング関数のフーリエ変換 $\hat{\phi}(\omega)$ が,次の性質を持つと定義されている.

1) $\hat{\phi}(\omega)$ は無限回微分可能である.

2) $\hat{\phi}(\omega)$ = $\begin{cases} 1, & |\omega| \le \frac{2\pi}{3} \\ \cos[\frac{\pi}{2}\nu(\frac{3}{2\pi}|\omega|-1)], & \frac{2\pi}{3} \le |\omega| \le \frac{4\pi}{3} \\ 0, & |\omega| \ge \frac{4\pi}{3} \end{cases}$ (7)

ただし, νは次式を満たす平滑関数である.

$$\nu(x) = \begin{cases} 0, & x \le 0\\ 1, & x \ge 1 \end{cases}, \quad \nu(x) + \nu(1-x) = 1$$

またウェーブレットのフーリエ変換 $\hat{\psi}(\omega)$ は,式 (8)で表現される.

$$\hat{\psi}(\omega) = \begin{cases} e^{i\omega/2} \sin[\frac{\pi}{2}\nu(\frac{3}{2\pi}|\omega| - 1)], & \frac{2\pi}{3} \le |\omega| \le \frac{4\pi}{3} \\ e^{i\omega/2} \cos[\frac{\pi}{2}\nu(\frac{3}{4\pi}|\omega| - 1)], & \frac{4\pi}{3} \le |\omega| \le \frac{8\pi}{3} \\ 0, & |\omega| \ge \frac{8\pi}{3} \end{cases}$$
(8)

Fig. 5 ウェーブレット関数W(x)

Fig. 6 ウェーブレット関数のフーリエ変換 $\hat{W}(\omega)$

スケーリング関数のフーリエ変換 $\hat{\phi}(\omega)$ は, Fig.4 に示すように,角がなく滑らかになり,局在性が よい.フーリエ逆変換を施したスケーリング関数 $\phi(x)$ の形状は, Fig.3のようにすぐ減衰する局在性 がよいものになる.

このウェーブレットのスケーリング関数をもと に標本化定理を満たす標本化関数を求める方法に ついてはすでに知られている.多重解像度解析空 間において,有限角周波数の任意信号g(x)は,ス ケーリング関数 $\phi(x)$ を用いて一意に表現できる. スケーリング関数 $\phi(x)$ のフーリエ変換を $\hat{\phi}(\omega)$ とし て,離散フーリエ変換を $\hat{\phi}^*(\omega)$ とすると,標本化定 理を満たすウェーブレット標本化関数のフーリエ 変換 $\hat{W}(\omega)$ が次式で求められる.

$$\hat{W}(\omega) = \hat{\phi}(\omega) / \hat{\phi}^*(\omega) \tag{9}$$

そこで,式(9)よりフーリエ逆変換を施して,ウ ェーブレット標本化関数W(x)を次式で算出できる.

$$W(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\hat{\phi}(\omega)}{\hat{\phi}^*(\omega)} \cdot e^{j\omega x} \,\mathrm{d}\omega \qquad (10)$$

ウェーブレット標本化関数のフーリエ変換 $\hat{W}(\omega)$ をFig.6に,ウェーブレット標本化関数W(x)をFig.5 に示した.このウェーブレット標本化関数W(x)の 形状は,Fig.1のSinc関数S(x)に比べて,局在性が 改善されている様子が分かる.標本化定理の条件 は、角周波数の帯域幅については $-\pi < \omega/T < +\pi$ となり、近似的に満たすことが分かる.今回の実 験ではこのウェーブレット標本化関数W(x)を採用 している.

このように局在性があるウェーブレット標本化 関数W(x)を用いることで,FMR法と組み合わせ ると高速化が期待できる.それは従来までのFMR 法ではSinc関数S(x)を採用していたために,ひと つの点を再構成する際にも領域全体からのデータ が必要であったが,局在性のあるウェーブレット 標本化関数W(x)を用いることで局所領域で再構 成が可能になる.つまり再構成に必要な部分だけ を読み出すだけでよくなり,計算量が大幅に削減 可能となった.

4. 長方形スキャン方式

VLSIによる高速な画像再構成を行うために,以 下ではあらかじめ蓄えておく一般逆行列*C*⁺の係 数値の個数を大幅削減する方法を提案する.

そこで本稿では,最初にX線を平行状ビームとして,ビームの入射パターンに規則性を見いだす.次にX線を物体に近づけた状態で投影計測したファン状ビームから平行状ビームへ変換する方法を示す.

4.1 一様透過性

標本空間においてセンサーを固定配置する.す るとセンサーに対して水平方向の標本点の各層に おいては,すべて同じ入射パターンを示すことが 分かる.これを「一様透過性」という.Fig.7にそ の様子を示す.この一様透過性を常に満たすよう に,標本空間にビームを入射させることで,同一 の層に対して1パターンの再構成係数並びを用意 しておくだけでよくなり,一般逆行列C⁺の再構 成係数並びを垂直方向の層数分のみ蓄えておくだ けでよいことになる.

Fig. 7 一樣透過性

4.2 長方形による投影角度の選定

ー様透過性を満たすことで,センサーに対して 水平方向では再構成係数並びを大幅削減すること ができた.さらに,垂直方向にある規則性を持た せることにより,垂直方向でも再構成係数並びを 大幅削減する方法を示す.

Fig.8のように,X線源が長方形の周辺を移動し ながら,相対応する辺のセンサで投影値を計測す る方法を「長方形スキャン方式」と呼ぶ.ここで, 平行ビームの通り方が何層おきかに同じようにな るように投影方向の選定を工夫する.

つまり, Fig.9のように長方形の中心画素とその 周辺画素とを結ぶビームの方向を投影方向として 選定する.この例では7×7の正方形であるが,セ ンサーに対して垂直方向に3層おきに平行ビーム が入射することが分かる.このように投影方向を 選定すると,垂直方向に対しては3パターンの再

Fig. 9 投影方向の取り方

構成係数並びを蓄えておくだけでよい.大きな再 構成領域でも,再構成係数並びを繰り返し使用す ることができるため,情報量を大幅に削減するこ とができ,VLSIの内部に再構成係数並びを格納す ることが可能になる.例えば,1000×1000の画像 では,一様透過性により水平層の1000画素が1画 素分の再構成係数並びでよくなるので1000分の1 に削減できる.さらに投影角度の選定により,垂 直方向の1000画素が3画素分でよくなるので1000 分の3に削減できる.

このような長方形スキャン方式を採用すること で,装置全体の大きさをコンパクトにすることが 期待でき,一様透過性や垂直方向に現れる規則性 を活用できるので,専用VLSIのハードウエアの設 計が可能になり,高速で安価な画像再構成の可能 性が期待でき,実用化に向けて大きな前進となる.

5. 投影データの変換

これまでX線を対象物体から遠く離れた状態で 投影計測する平行ビーム投影を想定してきた.装 置を小型化する観点からは,X線源を対象物体に 近づけた状態で投影計測することが望ましい.そ こで本研究では,X線源が長方形の周辺上を移動 して,対象物体の近くから扇形ビームを照射する, ファンビーム投影による長方形スキャン方式を提

Fig. 10 **原画像**(256 × 256)

Fig. 11 再構成画像(256 × 256)

案する.ファンビーム照射で計測された投影デー タから平行ビーム投影で得られる投影データへ変 換することができるならば,これまでの平行ビー ム投影での種々の利点を活かすことができる.

ここで平行ビームとは,センサーを基準とした 水平方向の標本点層に対して,空間的に平行に入 射するビームのことである.本研究では,ファン ビーム照射をセンサー上の標本点間隔で時間的に 移動させるならば,その計測データの中から平行 ビーム投影データを抽出生成することができるこ とに留意する.

本研究ではこの性質を利用し,長方形スキャン によるファンビーム投影データから平行ビーム投 影データへ変換することで,これまでの一般逆行 列*C*⁺に基づく画像再構成を行っている.

6. 実験

Fig.10に示す画像サイズが256×256の画像を原 画像として,シミュレーション実験を行った.平行 ビームに変換した際の投影方向数を40方向,局所 領域サイズを89とした場合の再構成結果をFig.11 に示す.このように比較的良好な画像が得られた. 両者の正規化誤差分散をとってみると0.6370であ る.再構成の計算時間は,通常のワークステーショ ンを用いて3.97秒であり,大変高速であることが 分かった.

7. むすび

本研究では,産業分野向けのX線CT装置の開発 を目指して,画像再構成FMR法にウェーブレット 標本化関数W(x)を導入して,さらに長方形スキャ ン方式を採り入れた,新しい画像再構成手法を提 案した.

本手法では,長方形の周辺を移動するX線源から のファンビーム投影データを計測して,平行ビーム 投影データへ変換し,各方向の投影ビーム間での 規則的な透過位置関係を活用する工夫により,再 構成係数並びのデータ量を大幅に削減している. 本手法の主な特色を,以下に示す.

 1) 長方形スキャン方式に基づきファンビームで 投影計測するので,装置を小型にできること.

 2) 再構成の計算構造が規則的であり,再構成 係数並びのデータ量が大幅削減できるので, VLSIにアルゴリズムを搭載して能率よく実 行できる可能性が高いこと.

今後の課題は,具体的検討を進めてX線スキャナ 装置を構成し,再構成を確認評価することである. さらに,長方形スキャンの電子化を検討し,超並 列アーキテクチャのVLSI設計を行うことである.

本手法は長方形電子スキャンと専用VLSIを導入 することにより,ベルトコンベア上でのような高 速性が求められる分野でも手ごろな価格で対応で きる可能性があり,産業分野の不可視な対象物体 の内部をリアルタイムで画像化する簡易装置の構 築可能性が期待される.

参考文献

- 1) 尾上 守夫: 医用画像処理, 朝倉書店(1982).
- 2) 江尻 正員: 画像処理産業応用総覧, フジ・テクノシ ステム, (1995).
- H. Hiriyannaiah: X-ray Computed Tomography for Medical Imaging, IEEE Signal Processing, Vol.114, No.2 45/59 (1997).
- 4)田山,船岡:緩やかな2次元濃度分布に対する特異 値分解による可視化計測,可視化情報学会誌,14巻 52号 21/27 (1994).
- 5) 田山,加藤,大坊,長谷川,杜,栗田:傾斜スキャンに よるX線投影データ取り込みと3次元画像再構成の 実験,画像電子学会誌,28巻2号,152/160 (1999).
- N. Tayama, H. Du and M. Daibo, H. Kurita, K. Seki: Development of Computed 3D Imaging System from a Few Projections, Proc, IASTED SIP '99, 119/123 (1999).
- 7) H. Du, N. Tayama, M. Daibo, T. Hasegawa and K. Seki: A Computed Imaging System Using Wavelets Sampling Model, Proc. MVA '98, 115/118 (1998).
- 8) 杜,田山,渡邊,関: VLSI向きの極少数方向投影に よるウェーブレット部分画像再構成,画像電子学会 誌 30巻 3号, 233/241 (2001).
- 9) 田山, 杜, 大坊: 産業用実時間3次元CTの画像再 構成プロセッサ, 計測と制御, 40巻 12号, 907/910 (2001).
- 10) A. Albert: Regression and the Moore-Penrose Pseudo Inverse, Academic Press, New York (1972).
- Y. Meyer: "Wavelets : Algorithms and Applications", SIAM, Philadelphia (1993).