計測自動制御学会東北支部第 230 回研究集会(2006.7.21) 資料番号 230-3

ステッピングモータの開ループ制御における目標値波形整形用前置補償要素 Pre-Compensator for Adjustment of Waveform of Reference Signal Used for Open-Loop Control of a Stepping Motor

○柴田真生*, 松尾健史*, 秋山宜万*, 三浦 武*, 谷口敏幸*

OMasaki Shibata*, Kenshi Matsuo*, Yoshikazu Akiyama*, Takeshi Miura*, Toshiyuki Taniguchi* *秋田大学

*Akita University

キーワード:ステッピングモータ(stepping motor),マイクロステップ駆動(microstep drive), 前置補償要素(pre-compensator),目標値波形(waveform of reference signal)

連絡先:〒010-0852 秋田県秋田市手形学園町 1-1 秋田大学工学資源学部 電気電子工学科 三浦 武, TEL: (018)889-2329, FAX: (018)837-0406, E-mail:miura@ipc.akita-u.ac.jp

1. はじめに

ステッピングモータはセンサを必要とし ない開ループによって制御できるモータで ある.また,一つの入力パルスに対し一定 の角度だけ回転するモータであるので,回 転角度はパルスの総数に比例し,回転速度 はパルス周波数に比例する¹⁾.このように, 入力信号であるパルス数とパルス周波数を 調節することで回転角度と回転速度を制御 できる.更に,その駆動がパルス信号によ ってなされることからディジタル制御装置 との組合せが容易となる.

このような特徴からステッピングモータ はコンピュータの周辺装置や OA 機器など に幅広く利用されている.

ステッピングモータを駆動させた場合,

回転子の停止位置であるトルク平衡点は励 磁の切替毎にステップ状に移動する.この 時,回転子は慣性の影響によってトルク平 衡点付近で振動を生じる.この回転子振動 が,脱調や整定時間の増大の要因となり, 高精度な位置決め操作に大きな影響を及ぼ してしまう.

この回転子振動に対し,ステッピングモ ータの基本ステップ角を細分化させ,トル ク平衡点の位置を微小な距離ずつ移動させ ることで振動抑制を図るマイクロステップ 駆動²⁾が提案されている.この手法を用い ることによって,特に定速回転時における 回転子振動を抑制できることがよく知られ ている.しかし,マイクロステップ駆動を 用いたとしても,速度変動を伴う過渡的な 領域に対して有効であるとは言い切れない. 一方,文献 3)によると前置補償要素とし て IIR 形低域通過フィルタを用いて,入力 信号である角度目標値から振動を誘起する 周波数成分を除去した角度目標値を用いて 駆動することにより,回転子振動を抑制で きるとされている.しかし,この手法では 低域通過フィルタを用いることによって新 しく生成される角度目標値は入力である角 度目標値に対し遅れを生じてしまい,目標 値追従性に大きな影響を及ぼしてしまう. 更にこの文献においては,ステッピングモ ータのマイクロステップ駆動に対する適用 が示されていない.

そこで本研究では、ステッピングモータ のマイクロステップ駆動に対し、回転子の 立ち上がりに生じる遅れを解消する前置補 償要素を構成し、回転子振動を抑制するこ とを目的とする.

2. 実験装置

本章では、本研究で使用した実験システ ムについて説明する.使用したステッピン グモータはオリエンタルモーター社製の PK244-02B で、2 相ハイブリッド形、定格 電圧 6.0[V]、定格電流 0.8[A]のモデルであ る.このモータはバイファイラ巻線を持ち、 ユニポーラ方式により駆動される.

本研究の実験システムを Fig.1 に示す. パ ーソナルコンピュータ (NEC 社製 PC9821Xa13)(以下 PC と記す)から,各相の 励磁電流の指令値が D/A 変換器を介して駆 動回路へ出力される.この指令に従って, ステッピングモータの各相に励磁電流が流 され,モータが駆動される.回転角度は 3600[pulses/rev.]のインクリメンタル形ロー タリーエンコーダの 2 相の信号をアップダ ウンカウンタにおいて 4 逓倍されることで 14400[pulses/rev.]の精度で検出され PC へ入 力される. なお,本システムの入出力デー タのサンプリング時間は 0.1[ms]である.

Fig.1 Experimental system.

3. 目標値波形整形用前置補償要素

3.1 ステッピングモータのモデリング⁴⁾

前章で示したように、本研究で使用した ステッピングモータは2相ハイブリッド形 である.前置補償要素を設計するにあたっ て、このモータの周波数特性を知る必要が あるために、まずはステッピングモータの モデリングを行う.このモータにおいて、 発生トルクτを各相の励磁電流および回転 子角度の関数として以下のような正弦波状 の分布として表すことができる.

$$\tau = -K_T (i_A - i_{\overline{A}}) \sin(N_r \theta) + K_T (i_B - i_{\overline{B}}) \cos(N_r \theta)$$
(1)

ただし, K_T :トルク定数, N_r :回転子の 歯数, θ :回転子角度, $i_A \sim i_{\overline{B}}$:各相励磁 電流値とする.ステッピングモータのマイ クロステップ駆動において,(1)式中の励磁 電流を微小量ずつ変化させることによって トルク平衡点の位置を微小な距離ずつ移動 させることができる.なお,(1)式のように トルク分布が正弦波状である場合には,励 磁電流も正弦波状とすることにより後述の ようにトルクリプルを防ぐことができる. バイファイラ巻線を用いる場合,各相の励 磁電流の値を定格電流 *I*_m,トルク平衡点の 位置*θ*,を用いて,

$$\begin{split} i_{A} &= \begin{cases} I_{m} \cos(N_{r}\theta_{e}), & \cos(N_{r}\theta_{e}) \ge 0\\ 0, & \cos(N_{r}\theta_{e}) < 0 \end{cases} \\ i_{B} &= \begin{cases} I_{m} \sin(N_{r}\theta_{e}), & \sin(N_{r}\theta_{e}) \ge 0\\ 0, & \sin(N_{r}\theta_{e}) < 0 \end{cases} \\ i_{\overline{A}} &= \begin{cases} 0, & \cos(N_{r}\theta_{e}) \ge 0\\ -I_{m} \cos(N_{r}\theta_{e}), & \cos(N_{r}\theta_{e}) < 0 \end{cases} \\ i_{\overline{B}} &= \begin{cases} 0, & \sin(N_{r}\theta_{e}) \ge 0\\ -I_{m} \sin(N_{r}\theta_{e}), & \sin(N_{r}\theta_{e}) < 0 \end{cases} \end{split} \end{split}$$
(2)

として表すことができる.従って,(2)式中 の θ_e を微小量ずつ変化させることにより各 相の励磁電流の値を求めることができる. このときの発生トルクは(1)および(2)式を 用いて

$$\tau = -K_T I_m \sin\{N_r(\theta - \theta_e)\}$$
(3)

となり, Fig.2の実線で表されたように*θ*^eが トルク平衡点となる正弦波状の分布を持つ 角度-トルク特性となる.この場合,*θ*^eを 変化させてもトルク平衡点に対するトルク 曲線の相対的な位置関係および形状は変化 しないので、トルクリプルの無い駆動が可 能となる.以下では、トルク平衡点*θ*^eに任 意の値を与えられるものとし、上記のトル ク特性と機械系の運動方程式を合わせシス テムの伝達関数を求め、その周波数特性を 解析する.

形でなければならない.ここでは,文献 4) に従い,(3)式として得られたトルク分布を Fig.2の破線で表されたように正負のピーク を通る直線で近似して線形化を行う.この 近似によるとトルク平衡点付近での発生ト ルクは

$$\tau = -\frac{K_T I_m}{\pi / (2N_r)} (\theta - \theta_r) = -c(\theta - \theta_e)$$
(4)

となる.ただし, c は定数で

$$c = \frac{K_T I_m}{\pi / (2N_r)}$$

である.

一方,ステッピングモータの無負荷時に おける機械系の運動方程式は次式で表され る.

$$J\frac{d^2\theta}{dt^2} + D\frac{d\theta}{dt} = \tau$$
(5)

ただし, *J*:回転子の慣性モーメント, *D*: 制動係数である.(4)式の発生トルクを(5)式 に代入すると次の微分方程式が得られる.

$$J\frac{d^2\theta}{dt^2} + D\frac{d\theta}{dt} + c\theta = c\theta_e$$
(6)

よって、外部より任意の値を与えること のできる量であるトルク平衡点 θ_e を入力、 回転子角度 θ を出力とみなした場合の伝達 関数 P(s)は(6)式をラプラス変換して得られ る 2 次系となる.

Fig. 3 Step response of controlled system.

$$P(s) = \frac{c/J}{s^{2} + (D/J)s + c/J}$$
(7)

なお、この系の固有周波数 ω_n は、

$$\omega_n = \sqrt{c/J} \tag{8}$$

となる.

実際の実験システムを用いてステップ応 答波形を取得し,(7)式を用いた計算により 得られた応答と比較することにより,モデ ルの妥当性を確認した.なお,モデルを用 いた計算には,実際のシステムに合わせた 以下のパラメータを代入した.

$$J = 63 \times 10^{-7} [\text{N} \cdot \text{m} \cdot \text{s}^2/\text{rad.}]$$
$$D = 0.0013 [\text{N} \cdot \text{m} \cdot \text{s}/\text{rad.}]$$
$$K_T = 0.23 [\text{N} \cdot \text{m}/\text{A}]$$
$$I_m = 0.8 [\text{A}]$$
$$N_m = 50$$

これらの値のなかで,機械系のパラメータ J および D は,回転軸に直結された測定系 も含んだものである.入力 θ_eを 0 からモー タの基本ステップ角までステップ状に変化 させた場合の図を Fig.3 に示す.これによる と,実験によって得られた応答とモデルの 応答がほぼ一致しており,上記のモデルの 妥当性を確認することができる.Fig.4 に P のゲイン特性を求めた結果を示す.回転子 の固有振動は,この特性においてピークを 与える固有周波数付近の周波数成分が入力

信号に含まれている場合に誘起されると考 えられるので、振動を抑制する際にはこの 領域の周波数成分を入力信号からカットす ればよい.

3.2 前置補償要素の設計

従来までの前置補償要素は,角度目標値 $\theta_r(t)$ を低域通過フィルタに入力し,不要な 周波数成分を除去した角度目標値 $\theta'_r(t)$ を生 成するものである.ここで $\theta'_r(t)$ は通常の低 域通過フィルタを用いることによって $\theta_r(t)$ に比べ立ち上がりが遅れてしまう.従って, 回転子の振動を抑制することは可能になる が,目標値追従性を悪化させてしまう.

ステッピングモータの回転子振動は,速 度変動を生じる起動時や停止時といった過 渡的な領域において生じる.すなわち,こ れまでに提案されてきたような通常の低域 通過フィルタとは異なり,速度変動を生じ る過渡領域においてのみカットオフ周波数 を下げる低域通過フィルタを前置補償要素 として使用すれば回転子振動を抑制できる ばかりか,前述した目標値追従性の問題点 も改善できると考えられる.

上記の要求を満たすため、本研究では Fig.5 に示されるシステムを構成した. 最初 に入力である角度情報 $\theta_r(t)$ を速度情報 $\omega_r(t)$ へ変換する.ここで,速度変動を検出 するために $\omega_r(t)$ を1次遅れ系を離散的に近 似した次のようなフィルタに入力すること で $\omega'_r(t)$ が生成される.

$$\omega_{o}(t) = \frac{1}{1 + T / \Delta t} \left\{ \omega_{i}(t) + \frac{T}{\Delta t} \omega_{o}(t - \Delta t) \right\}$$
(9)

ここで、 $\omega_i(t)$ は時刻 t におけるフィルタへ の入力であり、 $\omega_o(t)$ はフィルタの出力、Tはフィルタの時定数であり、速度変動を生 じさせるため、試行錯誤により T=10.0[ms] と決定した.また、 Δt はサンプリング時間 である. $\omega_r(t)$ および $\omega'_r(t)$ の2つの速度情 報間に生じる差を利用して速度変動を検出 し、 $\theta_r(t)$ を通過させるバタワースフィルタ のカットオフ周波数 $f_c(t)$ を決定する.なお、 $f_c(t)$ の決定には(10)式を用いた.

$$f_c(t) = A \cdot \exp\left\{B \mid \omega_r(t) - \omega_r'(t)\right\}^n$$
(10)

ここで, A および B は定数であり,後述す る評価に基づいて試行錯誤により決定した. また,速度の誤差の取り方によってカット オフ周波数の変化に大きな違いが現れると 考えられるので,本研究において(10)式中の n を n=1 とした場合と n=2 とした場合に関 して実験を行った.

本研究では、低域通過フィルタとして IIR 形ディジタルフィルタを用いた.また、フ ィルタの種類は最大平坦特性を持つことで 知られているバタワースフィルタ⁵⁾を用い た.ディジタルフィルタを設計する手法と しては、アナログフィルタを設計し、双 1 次変換⁶⁾を行う手法を用いる.

2 次バタワースフィルタの伝達関数 H(s) に希望のカットオフ周波数を用いると,

$$H(s) = \frac{1}{(s/\omega_a)^2 + 1.414(s/\omega_a) + 1}$$
(11)

となる. ここで, ω_a はアナログカットオフ 周波数である. この式を双 1 次変換によっ てディジタルフィルタの伝達関数に変換す ることで,以下のようなアナログフィルタ の周波数 ω_a とディジタルフィルタの周波 数 ω_a との関係式を得られる.

$$\omega_a = (2/\Delta) \tan(\omega_d \Delta/2) \tag{12}$$

ここで、 Δ はサンプリング時間である.カットオフ周波数 $f_c = \omega_d / (2\pi)$ としたとき、 ディジタルフィルタの伝達関数 H(z)は、

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}}$$
(13)

となる.ここで、フィルタ係数 a_1 、 a_2 、 b_0 、 b_1 、 b_2 は、以下の値を持つ.

$$a_{1} = \frac{2 - 2.828 \{ \tan(\pi f_{c} \Delta) \}^{2}}{1.414 \{ \tan(\pi f_{c} \Delta) \}^{2} + \tan(\pi f_{c} \Delta) + 1}$$
$$a_{2} = -\frac{1.414 \{ \tan(\pi f_{c} \Delta) \}^{2} + \tan(\pi f_{c} \Delta) - 1}{1.414 \{ \tan(\pi f_{c} \Delta) \}^{2} + \tan(\pi f_{c} \Delta) + 1}$$

数に対する a_1 , a_2 , b_0 , b_1 , b_2 を導出する ことが可能であり、制御対象に入力される 角度目標値はこれらのフィルタ係数によっ て自動的に修正される.

4. 実験結果

前章で提案された前置補償要素の効果を 確認するため,第2章で紹介された実験シ ステム中の PC のソフトウェア上で前置補 償要素を実装し,モータを駆動した.ステ ッピングモータの角度目標値は予めオフラ インで与えられるので,目標値の修正は制 御開始前に行われる.本章ではその結果を 示す.本実験システムでは,モータの駆 動方法としてマイクロステップ駆動を用い るが,ここでは基本ステップ角を 64 分割し 表1 実験で用いたパラメータ

Table.1	Parameters of the experiment.		
reference	order	A	В
144[deg./s]	<i>n</i> =1	380	-0.022
144[deg./s]	<i>n</i> =2	200	-0.00015
72[deg./s]	<i>n</i> =1	380	-0.036
72[deg./s]	<i>n</i> =2	200	-0.00050

た 0.002815[deg.]を単位としてトルク平衡 点 θ_e を移動させている.なお、システムに 与える角度目標値 θ_r は 7.2[deg.]までランプ 状に変化させ、静止させるものとする.こ の傾きは 144[deg./s]と 72[deg./s]の 2 種類に 決定した.Fig.6 および Fig.7 に回転子の角 度応答を示し、Fig.8 にそれらの評価を示す. なお、カットオフ周波数の決定に用いたパ ラメータの値を Table.1 に示す.Fig.6 およ

び Fig.7 を見ると, 通常のマイクロステップ 駆動を用いた場合は最終停止位置付近にお いて振動現象を生じている様子が示されて いる. また, 文献 3)の手法にマイクロステ ップ駆動を用いた場合は立ち上がりに遅れ を生じている様子を示している. これらに 対し、本研究で新しく構成した前置補償要 素を適用した場合は前述した問題点が改善 されている様子を示している.更に,慣性 負荷の装着による応答の変化が見られない ために, 慣性変動に対するロバスト性も見 られる.以上の結果を定量的に評価するた めに,目標値が最終停止位置に到達した時 間から角度応答のデータがその最終値の ±5[%]以内に収まるまでの時間である整定 時間と(14)式で表される誤差面積を求めた.

 $I_{ea} = \int_0^{t_r} \left| \theta_r(t) - \theta(t) \right| dt \tag{14}$

ただし, *t*, を角度目標値θ, が最終停止位置 に到達する時間とする. Fig.8(a)および(b)よ り,本研究で構成した前置補償要素を適用 した場合は,他の手法よりも整定時間が短 くなっていることから振動抑制に有効であ る.また, Fig.6 および Fig.7 を見ると本研 究で構成した前置補償要素を適用した場合 は立ち上がりに若干の遅れを生じているが, Fig.8(c)および(d)より目標値追従性が著し く悪化しているとも言い切れない.

5. おわりに

本研究では回転子に生じる振動現象を抑 制するための前置補償要素に対して,立ち 上がりに生じる遅れを解消させる手法を提 案した.4章で示した結果から,本研究で

Fig.8 Evaluation of experimental results.

構成した前置補償要素の適用は振動抑制に 対して有効であり,目標値追従性に対して 従来よりも遥かに精度を向上させる結果を 得られた.さらに,慣性変動に対してロバ ストであることも分かった.

今後の課題として、フルステップ駆動へ の適用や(10)式に示された関数に指数関数 以外のものを適用することが挙げられる.

参考文献

- 武藤高義:アクチュエータの駆動と制 御,89,コロナ社(1992)
- 2) 百目鬼英雄: ステッピングモータの使い方, 95/108, 工業調査会(1993)
- 3) 三浦 武,谷口敏幸: PWM 形スイッチ ングシーケンスを用いたステッピング モータの回転子振動抑制,電気学会論 文誌 D121-10, 1093/1094(2001)

- 4) 三浦 武,谷口敏幸,百目鬼英雄:前 置補償要素の適用によるステッピング モータのマイクロステップ駆動時の回 転子振動の抑制,電気学会論文誌 D120-12, 1462/1470(2000)
- 5) 谷口慶治:信号処理の基礎, 59/65, 共 立出版株式会社(2001)
- 6) 中村尚吾:ビギナーズディジタルフィ ルタ, 88/132,東京電機大学出版局 (1989)