計測自動制御学会東北支部第 232 回研究集会 (2006.11.24) 資料番号 232-11

壁面圧力計測と流れのシミュレーションの融合による

実流れの圧力場の再現

Reproduction of Pressure Field in Real Flow by Integrating Wall Pressure Measurement and Flow Simulation

○山縣貴幸*, 柴田光*, キャスパーシミット**, 早瀬敏幸***

○Takayuki Yamagata*, Hikaru Shibata*, Kasper Smit**, Toshiyuki Hayase***

*東北大学, **University of Twente, ***東北大学流体科学研究所

*Tohoku University, **University of Twente, ***Institute of Fluid Science, Tohoku University

キーワード: 圧力計測(Pressure measurement),数値シミュレーション(Numerical simulation),計測 融合シミュレーション(Measurement-Integrated simulation),オブザーバ(State observer),カルマン渦列(Karman vortex street)

連絡先:〒980-8577 仙台市青葉区片平 2-1-1 東北大学流体科学研究所 流体融合研究センター 超実時間医療工学研究分野,山縣貴幸, Tel.: (022)217-5313, Fax.: (022)217-5254, E-mail: yamagata@reynolds.ifs.tohoku.ac.jp

1. 緒言

流れ場における速度や圧力などの状態量を 取得する方法には、風洞実験に代表される実験 的手法と数値シミュレーションによる解析的 手法がある.実験計測では、データの信頼性の 評価が容易であるため、実現象の状態量を正確 に計測することができるが、流れ場全体の状態 量を得ることは困難である.数値シミュレーシ ョンは、流れ場全体の詳細な状態量が得られる が、実際の流れの初期条件や境界条件を厳密に 設定することは困難である.また、精度の良い 数値シミュレーションを行うためには、多くの 計算時間を要する.近年、数値シミュレーショ ンの産業応用が盛んに行われており、その場合 には、限られた計算機資源や計算時間で信頼で きる解を得ることも重要である.

実現象の詳細な状態量をコンピュータ上に 再現するために,数値シミュレーションと実験 計測とを一体化した計測融合シミュレーショ ンが提案されている¹⁾.計測融合シミュレーシ ョンは,制御工学のオブザーバ理論を流れの解 析に応用し,実現象のモデルとして低次元の線

Fig. 1 Structure of flow observer

形常微分方程式の代わりに流れの数値シミュ レーションを用いた手法である. 流れのオブザ ーバである計測融合シミュレーションの概念 図を Fig.1 に示す。本手法を応用し、ハイブリ ッド風洞での角柱後流のカルマン渦解析²⁾,オ リフィス流れを対象とした管内流れ解析³⁾,超 音波計測を用いた血流解析⁴⁾が行われ、その 有効性が報告されている. ハイブリッド風洞は, 風洞実験と計測融合シミュレーションを一体 化したオンラインシステムである. ハイブリッ ド風洞でのカルマン渦解析では,通常の数値シ ミュレーションには不十分な格子解像度にお いて,実験値と一致する速度の変動周波数や振 幅を再現できることがわかっている²⁾. しかし, これまでのハイブリッド風洞では, 圧力場の再 現に関する検証は行われていない. 圧力場は, 流れの構造に影響を及ぼす因子であるため,重 要な流れの情報である.

本研究では、角柱後流に発生するカルマン渦 列を対象として計測融合シミュレーションを 行い、ハイブリッド風洞による圧力場の再現性 の検証を行う. 圧力場の再現性は、風洞側壁に おける圧力計測と対応する位置における解析 結果とを比較し評価する⁵.

2. 方法

2-1 ハイブリッド風洞の構成

本稿で扱うハイブリッド風洞は, Fig. 2 に示 すように流路中に角柱を配置した風洞, 圧力セ ンサ(SSK, DP8A-2), ワークステーション(SGI, OCTAIN, 300 MHz, 2CPU), スーパーコンピュ ータ(SGI, Silicon Graphics Prism, 1.6 MHz, 128CPU)で構成される. ワークステーションは, 圧力センサとスーパーコンピュータとのイン ターフェイスや計算結果の表示に使用される. Fig. 3 は, 風洞の平面図である. 風洞は, 200 mm ×200 mmの断面をもつ長さ 2510 mmの正方形

管路で, 流路中に 30 mm×30 mm の角柱を有 する. 整流装置として, 流路の上流端にフィル タ(ブリジストン, エバーライト SRHR-13, 厚 さ30mm)とスチールメッシュ(5mm矩形格子, 厚さ1mm)を設置した.風洞の下流にフレキシ ブルチューブ(内径 175 mm)を介して接続した 送風機(西村電機, NK-200)により吸気すること で流れを発生させる. 送風機は, インバータ(三 菱電機, FR-520-1.5K)により制御され, 流量と 周波数の関係は予備実験により求められた.実 際の流れの情報を数値シミュレーションに取 り込むため,風洞の中央平面での角柱正面と両 側面の圧力を計測する(Fig. 4 参照). 本システ ムでは,角柱に対して垂直な風洞の中央平面を 計算領域とする二次元解析を行っている. ワー クステーションは、フィードバック用に計測さ れた圧力データをソケット通信を用いてスー パーコンピュータに転送する. スーパーコンピ ュータでは,計測融合シミュレーションが行わ れ、計算機上に実際の流れ場が再現される.詳 細な解析方法は次節に示す.計算結果は,再び ワークステーションに転送され,位相解析によ る特徴点抽出法のを用いて圧力場が可視化表 示される.これは, 圧力の最大, 最小点および 鞍点の特徴点を探索し,特徴点のまわりに色の 変化の勾配を大きく与えることで, 圧力場の特 徴的な構造を効果的に表示することができる 可視化法である.

Fig. 2 Configuration of the hybrid wind tunnel

Fig. 3 Geometry of the wind tunnel and position of pressure measurement

Fig. 4 Details of the square cylinder

2-2 計測融合シミュレーション

計測融合シミュレーションは,通常の流れの 数値シミュレーションと同様に Navier-Stokes 方程式(1)と連続式(2)を支配方程式としている. 本稿で対象としたのは,風洞の中央平面の二次 元領域で,流体は非圧縮の粘性流体とした.

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \operatorname{grad}) \mathbf{u} \right) = -\operatorname{grad} P + \mu \nabla^2 \mathbf{u} + \mathbf{f} \quad (1)$$

$$\operatorname{div} \mathbf{u} = 0 \tag{2}$$

通常の数値シミュレーションとの差異は,計算 と計測との差に比例したフィードバック信号 f が支配方程式に外力項として加えられる点で ある.ハイブリッド風洞では,Fig.4に示す角 柱側面とよどみ点との差圧 P_{AS}, P_{BS}, P*_{AS}, P*_{BS} から式(3)で定義されるフィードバック信号が, 各計測点の左側の主流方向の運動方程式に対 応する計算のコントロールボリュームに加え られる.記号のアスタリスクは,計測結果を表 している.

$$\mathbf{f} : \begin{pmatrix} f_{\mathrm{A}} \\ f_{\mathrm{B}} \end{pmatrix} = -KA \begin{pmatrix} P_{\mathrm{AS}} - P_{\mathrm{AS}}^{*} \\ P_{\mathrm{BS}} - P_{\mathrm{BS}}^{*} \end{pmatrix}$$
(3)

ここで,*K*はフィードバックゲイン,Aはコン トロールボリュームの断面積を示す.フィード バック信号が加えられることにより,計算した 圧力が計測した圧力に近づくように主流方向 の速度が加減速される.

計算格子は、風洞のほぼ全領域を対象とする 248×21 点の直行格子である.格子間隔は角柱 一辺 D=30 mm の 1/3 である dx=dy=10 mm と し、幅方向のみ風洞壁面の位置を一致させるた め、風洞壁面近傍において壁面に近づくほど格 子間隔が小さくなる不等間隔格子を用いた.最 小の格子間隔は、dy=7.5 mm である.通常の シミュレーションにとっては荒い計算格子だ が、フィードバックの効果により角柱後流のカ ルマン渦が再現できることが確認されている ²⁾.上述の支配方程式を、有限体積法に基づい て離散化し、SIMPLER 法に類似の手法を用い て解いた.

2-3 圧力計測

計測融合シミュレーションによって再現さ れた圧力場の検証のために,計算領域に対応す る平面での風洞側壁における圧力を計測した. 圧力は, Fig. 3 に示す計測点に直径 2 mm, 深 さ4 mm の圧力孔を設け、微差圧計(SSK, DP8A-2)によりゲージ圧を計測した. 微差圧計 の出力信号は、ローパスフィルタ(NEC 三栄、 9B02, 10 Hz) および A/D 変換機 (VMIC, VMIPCI-3322, 16 bit)を介してワークステーシ ョンに取り込まれる. ワークステーションでは, バイアスのドリフトの影響を取り除くために, 風洞が無風状態のときの出力を 30 秒間計測し, ゼロ点の補正を行った.また、デジタルローパ スフィルタ(IIR フィルタ, 20 Hz)により高周波 の電気ノイズを除去した. 圧力計測の精度は, ±0.05 Pa であった. 流れは、レイノルズ数 Re =1200の流量一定とし、流れが落ち着いた状 態から 30 秒間計測し, 平均値および RMS 値 を計算結果と比較するために 15~30 秒の 15 秒間で求めた.

3. 解析結果および考察

3-1 フィードバックゲイン

ハイブリッド風洞における計測融合シミュ レーションの設計パラメータは、式(3)に示さ れるフィードバックゲインを設定するために、Fig. 4 に示すフィードバック点 A における圧力変 化を比較した.上流境界条件は、実験と一致さ せるために、Re=1200となる流入速度の一様 分布を与えた.時間刻みは、 Δt に依存しない 解が得られた $\Delta t=0.01$ sとし、フィードバック ゲインをK=0.0, 1.0, 1.5, 1.8, 2.0, 2.2と変えて 計算を行った.フィードバックゲイン K=0.0は、フィードバックを行わない通常のシミュレ ーションと等価である.

Fig.5 にフィードバックゲインを変えた場合 のフィードバック点 A における圧力の時間変 化をよどみ点からの差圧で示す.計測した圧力 が,一定周期で変化していることが確認できる. 通常のシミュレーションでは、粗い計算格子を 用いたために角柱から発生するカルマン渦を 再現できず,下流の離れた場所で渦が発生した. そのため,角柱側面での圧力変化は小さく,ま た, 平均圧力は計測よりも高く見積もっている. 一方,フィードバックを行った場合は,圧力変 化の位相が計測と完全に一致しており,振幅も 比較的よく一致している.フィードバックゲイ ンを比較すると、ゲインが大きい方が、計測値 に近づいているが、フィードバックゲインをK =2.2 とした場合は、計算が発散した.フィー ドバックゲインK=1.8とK=2.0の差がわずか であるのに対して、K=2.0の方は計算時間が 約2倍となることから、K=2.0ではフィード バック信号が大きすぎて計算が不安定になっ ていると考えられる.したがって、以降の計測 融合シミュレーションでは、K=1.8 とする. 以前の研究²⁾では,モニター点(Fig.3に示す)

Fig. 5 Comparison of the pressure at the feedback point A between experiment and computation with various feedback gains

Fig. 6 Vortex shedding frequency with time step

の速度がレーザードプラ流速計による計測値 と最も良く一致するフィードバックゲインと して *K*=1.8 を用いており,圧力場の再現にお いても最適ゲインは同じ値であった.

3-2 カルマン渦の発振周波数

通常のシミュレーションと計測融合シミュ レーションにおいて計算時間刻みを変えた場 合のカルマン渦の発振周波数と実験結果を比 較した結果を Fig.6 に示す.カルマン渦の発振 周波数は、フィードバック点 A の圧力変化を 用いて、数値解析の過渡状態を除いた 15~30 秒間のデータで求めた.実験計測で得られたカ ルマン渦の発振周波数は、2.8 Hz である.通常 のシミュレーションでは、時間刻みが Δt= 0.002 s 以下で一定の発振周波数が得られてい るが、実際よりも高く見積もっている. 過去の 研究においても、二次元のカルマン渦解析では、 レイノルズ数 Re=1000 以上において、渦の発 振周波数が実験値と一致しないことが報告さ れている⁷⁾. 一方、計測融合シミュレーション では、時間刻みを $\Delta t=0.04$ s に設定した場合ま で実験と一致する発振周波数が得られている. このように、時間刻みを大きく設定した場合に も実際の流れの特徴を再現できる点は、計算負 荷の軽減につながり、リアルタイム解析実現の 大きな助けとなる.

3-3 平均圧力と圧力変動

前節において, 計測融合シミュレーション は, 計算時間刻みを Δt =0.04 s まで大きくし ても実験値と一致するカルマン渦の発生周 波数が得られたため, 時間刻みが風洞壁面で の平均圧力と圧力変動に及ぼす影響を調べ た.計算条件は, 前節と同様に *Re*=1200 の 流量一定とし, フィードバックゲインは *K*= 1.8 とする.時間刻みは, Δt =0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.04 s とした.

Fig. 7 は風洞壁面での平均圧力を実験結果 および各時間刻みの計算結果で比較してお り, 左側が通常のシミュレーション, 右側が 計測融合シミュレーションである. 時間刻み Δt=0.01 s で時間刻みに依存しない計算結 果が得られたため, より小さい時間刻みでの 計算結果は省略した. Fig. 7(a)の通常のシミ ュレーションでは, 角柱の位置で圧力が降下 した後の圧力の回復が緩やかであり, 実験値と は異なった変化を示している. また, 時間刻 みが大きくなると計算精度が悪くなり, 実験 結果との差が増加している. Fig. 7(b)の計測 融合シミュレーションでは, 時間刻みによる 違いはわずかであり, 通常のシミュレーショ ンよりも実験結果に近い結果が得られた.

Fig. 8 は風洞壁面での圧力の RMS 値の比較である. Fig. 8(a)の通常のシミュレーションでは,角柱近傍での圧力変動がほとんど見られず,角柱から離れた下流において圧力のRMS 値が最大値を示している. これは,粗い計算格子を用いているために,角柱から発

Fig. 7 Comparison of mean pressure with experiment along the sidewall of the wind tunnel

Fig. 8 Comparison of root-mean-square pressure with experiment along the sidewall of the wind tunnel

Fig. 9 Variation of pressure on the sidewall of

生するカルマン渦を再現できず,角柱から離 れた下流において渦が発生したためである. Fig. 8(b)の計測融合シミュレーションでは, 風洞壁面の圧力変動が実験結果とよく一致 しており,時間刻みを大きくした場合にも圧 力変動を再現できていることがわかる.

3-4 圧力変動の相関

Fig. 9 は、風洞壁面における圧力の時間変化 の比較である.解析結果は、圧力の平均値およ びRMS 値が実験値と良く一致した時間刻み Δ t=0.03 s のものである.Fig. 9(a)は、位置 x=-1Dでの圧力の時間変化である.通常のシミュレー ションにはほとんど圧力の変動は見られない が、計測融合シミュレーションは変動の振幅が 計測結果と良く一致している.また、圧力変動 の位相も計測結果と一致しており、実際の圧力 変化をよく再現できていることがわかる.Fig. 9(b)は、フィードバック点から離れた下流の x=15D での圧力変化である.フィードバックの 影響により、通常のシミュレーションよりも計 測融合シミュレーションのほうが、計測結果に 近づいているが,変動の様子は大きく異なって いる.

フィードバックの効果が及ぶ領域を評価す るために,風洞壁面の各計測点での圧力変化と 対応する解析結果から以下の式で定義される 相関係数 y を求めた.

$$\gamma = \frac{\sum_{i=1}^{n} (p_{ci} - p_{cm})(p_{si} - p_{sm})}{\sqrt{\sum_{i=1}^{n} (p_{ci} - p_{cm})^2} \sqrt{\sum_{i=1}^{n} (p_{si} - p_{sm})^2}}$$
(4)

ここで、*p*cおよび*p*sはそれぞれ解析結果および 計測結果の圧力, n はデータ数, 添え字の m は 平均値である.相関係数は二つのデータの相関 を示す指標で,-1≦γ≦1の値をとる.同じデ ータを用いた場合の相関係数は1である.Fig.5 に示す解析結果(K=1.8)と計測結果の相関係数 は、 y =0.96 であった. Fig. 10 に各計測点にお ける相関係数を示す.各計測点につき3回の実 験を行い,各計測データにおける相関係数を求 めた. 図中の線は、3 データの平均値を示して いる. 通常のシミュレーションでは、どの計測 点においても相関はほぼゼロである. 計測融合 シミュレーションでは,フィードバック点の位 置において相関にピークが見られる.また、フ ィードバックの効果は、風洞壁面においてはフ ィードバック点の位置から x=±3D の領域に おいて大きく作用していることがわかる.

Fig. 10 Correlation coefficient between measured pressure and computed pressure along the sidewall of the wind tunnel

通常の数値シミュレーションにおいては不 十分な精度の計算モデルで,計測融合シミュレ ーションは実際の流れの圧力場を良好に再現 することができた.計算負荷の低減は,流れ場 のリアルタイム解析を可能とするため,本稿で 用いたハイブリッド風洞は,計測だけでは得ら れない流れ場全体の状態量をモニタリングす るシステムへの応用が期待される.

4. 結言

圧力計測と流れのシミュレーションを一体 化した計測融合シミュレーションにおける圧 力場の再現性の検証のため,解析結果と実験計 測により得られた風洞壁面での圧力とを比較 した. 通常のシミュレーションでは不十分な精 度である計算条件において,計測融合シミュレ ーションでは良好に実流れの圧力場を再現で きた.特にフィードバック点の位置から±3D の範囲では,風洞壁面における圧力変動の位相 が解析結果と実験結果とで一致した.計算負荷 を小さくできる二次元解析では,リアルタイム に流れ場をモニタリングするシステムへの応 用が期待される.一方,流れ場の一部の情報か ら全体の状態量を正確に推定するためには、よ り実現象に近い三次元計算モデルを用いた検 討が必要になると考えられる.

参考文献

- T. Hayase and S. Hayashi: State Estimator of Flow as an Integrated Computational Method With the Feedback of Online Experimental Measurement, Trans. ASME, **119**, 814/822 (1997)
- T. Hayase, K. Nisugi and A. Shirai: Numerical realization for analysis of real flows by integrating computation and measurement, Int. J. Numer. Meth. Fluids, 47, 543/559 (2005)

- 3) 井上慎太郎,川嶋健嗣,舩木達也,香川利 春:計測融合シミュレーションを用いた非 定常管内流れ場のモニタリング,計測自動 制御学会論文集,42-7,837/843 (2006)
- K. Funamoto, T. Hayase, A. Shirai, Y. Saijo and T. Yambe: Fundamental Study of Ultrasonic-Measurement-Integrated Simulation of Real Blood Flow in the Aorta, Ann. Biomed. Eng., 33-4, 415/428 (2005)
- 5) 山縣貴幸, 柴田光, K. Smit, 早瀬敏幸: ハイ ブリッド風洞によるカルマン渦列のリア ルタイム解析の検証, 日本機械学会流体工 学部門講演会講演論文集, CD-ROM, (2006)
- S. Takahashi, Y. Takeshima and I. Fujishiro: Topological volume skeltonization and its application to transfer function design, Graphical Models, 66, 24/49 (2004)
- R. W. Davis and E. F. Moore: A numerical study of vortex shedding from rectangles, J. Fluid Mech., 116, 475/506 (1982)