エンドミル加工による面精度の評価に関する研究

A Study on Accuracy Evaluation of Surface by End Mill Machining

○戸井田直仁*,小林義和**,白井健二**,戸澤幸一***

ONaohito Toida^{*}, Yoshikazu Kobayashi^{**}, Kenji Shirai^{**}, Kouichi Tozawa^{***}

*日本大学大学院,**日本大学,***日産自動車㈱

*Graduate School, Nihon University, **Nihon University, ***Nissan Motor Corporation

キーワード:表面テクスチャ (Surface texture),機械精度 (Machining accuracy),加工 (Milling), CAD/CAM, CAT

連絡先:〒963-8642 福島県郡山市田村町徳定字中河原1番地
日本大学大学院 工学研究科 情報工学専攻 生産システム工学研究室 戸井田直仁, Ta:(024)956-8824, Fax:(024)956-8863, E-mail:u136114@ushiwaka.ce.nihon-u.ac.jp

1. 緒言

近年,自動車,デジタル機器などの部品の 視覚的な付加価値や機能向上を図るため表 面テクスチャに関する研究が行われている ¹⁾.表面テクスチャの加工方法としてはエ ッチングによるものが主流であるが,エンド ミルを用いて再現性の高い機械加工による 表面テクスチャの生成法が注目されている.

しかしながら,この工作機械においては工 作機械の熱変形,高速回転時の主軸・工具の アンバランスおよび切削抵抗による工具の 変形などの要因が加工精度に影響する.その ため高精度な表面テクスチャを生成するた めには,加工精度を測定・評価して,これら の問題を解決する必要がある.

本研究においては、フラットエンドミル工 具で加工した表面テクスチャを走査型白色 光干渉計により高精度に測定し、同時に加工 の際に主軸から取得した加工負荷を測定し、 テクスチャ生成における加工誤差の特徴を 解析した.

2.研究の方法

加工方法と形状精度の評価法を Fig.1 に示 す.まず,フラットエンドミル工具により, 溝加工する.加工後,走査型白色光干渉計に より形状精度を測定し,同時に加工の際に主 軸から取得した加工負荷を測定した. 走査型 白色光干渉計により測定した形状精度の評 価法は,形状の最大値と最小値の差を形状精 度の値とする.検証対象としては,加工部全 体,加工部の入口と出口である.加工部の入 口と出口は,その最大値と最小値との差をう ねりとしている.検証実験は,以下の3項目 について行った.

- (1)各種加工条件により加工した形状の 形状精度を走査型白色光干渉計によ り測定する.
- (2) 形状精度と加工負荷の相関を検証する.

Fig.2 溝加工による形状精度

(3) 形状精度と加工負荷の変動量による 相関を検証する.

3. 加工による形状精度の検証

微細加工における形状精度の解析を目的 に検証実験を行った.フラットエンドミル径 φ0.5mmにより,高精度な仕上げ加工を想定 して,切り込み深さを微小な切込みに設定し 加工した.送り速度は 500μm/s,主軸回転 数は 30000rpm である.材料は鋼材(S50C)を 対象に各種加工条件において,加工後の形状 精度を走査型白色光干渉計により測定し,実 際の値をプロットした.

Fig.2 は、溝加工による形状精度を示す. この結果から以下のことがわかった.形状精 度は全ての加工条件において変動している. 切り込み深さが大きくなるにつれ、形状精度 が全体的に大きく変動し、同様に加工部の入 ロ・出口のうねりも大きいことがわかる.加 工部の入口・出口においては、形状精度より 大きい値を示している.加工条件 No.3 は、 形状精度が大きく変動し、加工部の入口・出 口ともに大きなうねり傾向を示した.

4. 加工部の入口・出口と加工負荷の 相関の検証

形状精度と,加工の際に主軸から取得した 加工負荷との相関の検証を行った.形状精度 の変化が大きい傾向を示した加工条件 No.3 について検証する.Fig.3に検証対象におけ る形状精度と加工負荷を示す.

Fig. 3(a)は、加工部入口における形状精度 と加工負荷の関係を示す.加工部入口におい ては、切削量が増加することにより、主軸に 対する加工負荷が増大している.また、加工 負荷の大きな変動とともに形状の変動が起 きている.

Fig.3(b)は,加工部出口における形状精度

と加工負荷の関係を示す.加工部出口では, 切削量の減少とともに加工負荷も徐々に小 さくなっている.また,形状精度と加工負荷 の変動量は加工部入口より大きいことがわ かる.形状精度の変動は,加工負荷との相関 があることを確認した.

5. 形状精度の解析

Fig. 2, Fig. 3 の測定結果から形状精度に 関して,以下の3点のことがわかった.

- 加工部の入口・出口は深く切込んで いる.
- (2)加工負荷の大きな変動により、加工 部の入口・出口の形状は深く切り込 まれている.
- (3) 形状精度と加工負荷には、相関がある.

加工している最中の工具の変化を Fig.4 に示す.これは形状精度から,加工部入口に おいて,アプローチの際には,試料と工具の 関係は垂直であるが,切り込むにつれて工具

が徐々に撓み始めることを示している.また, 切削量が増すにつれ,工具も撓み,加工部出 口付近まで撓みながら加工されている.出口 においては,切削量が減少するとともに工具 が撓まずに加工している.そして,切込み深 さが大きいほど,工具が大きく撓み,同時に 加工部の入口・出口のうねりも大きくなる. 本来であれば,形状精度は入口・出口と形状 全体の変動量の差が生じないことが望まし い.したがって,工具が撓んでしまう現状に おいては,深く削った場合でも高精度加工を 行う加工方法を検討する必要がある.

6. 形状精度と加工負荷の変動量の 相関の検証

形状精度と加工負荷の変動は相関がある. そのため,形状精度と加工負荷の変動量によ り,加工部の入口・出口の相関があるかを検 証した.加工条件 No.3を例題として加工し, 検証対象別に測定値をプロットした. Fig.5(a)は,加工部入口の測定結果である. 加工負荷と形状精度の変動量は相関があり, 相関係数は0.59である.Fig.5(b)は,加工 部出口の測定結果である.加工部出口におい ても同様の傾向を示し,相関係数は0.65 で あり,加工部入口より相関が強いことを確認

Fig.5 形状精度と加工負荷の変動量の関係

できた. Fig.5より相関係数は0.5以上のため、相関がある.また、近似曲線を立てることにより加工条件 No.3により加工した際、取得した加工負荷を解析することによって、形状精度の変動量を把握できる.

7. CAMによる補正

CAM システムより, Fig.5の結果をデータ ベースとして格納し,加工条件の補正の自動 化を図る.この加工を行う前段階として,試 し加工を行い,加工負荷を取得する.取得し た加工負荷を Fig.5 の結果を基に解析する ことにより,形状精度の変動量を把握できる. 加工部の入口・出口の切込み深さをその変動 量分,補正する.加工条件の補正を行うこと により,加工部の入口・出口は深く切込まず に,形状変動を抑制する加工条件を定めるこ とができる.今後,補正した加工条件により 加工した形状精度と,同一の加工条件で補正 せずに加工した形状精度との比較を行うと ともに,CAMシステムとしての汎用性を検証 していく.

8. 結言

フラットエンドミル工具により溝加工し, 加工後の形状精度と,加工の際に主軸から取 得した加工負荷を解析した結果,以下の結論 を得た.

- (1)加工部の入口・出口の形状精度は 各々の加工負荷との相関があること を確認した.
- (2) 形状精度,加工負荷の変動量の関係 において,相関係数が 0.5 以上によ り相関があることを確認した.

今後は、本研究の結果を CAM システムへ導入し、加工条件の調整・補正を行い、形状変動を抑制するともに、CAM システムの汎用性を検証していく.

参考文献

 戸澤幸一、小林義和、白井健二:機械 加工による表面テクスチャリングシス テムの開発、2004 年度精密工学会北海 道支部学術講演会講演論文集(2004)、29