計測自動制御学会東北支部 第235回研究集会 (2007.5.18) 資料番号 235-2

クレッチマンATR配置によるラマン分光システムの構築

Development of Raman spectroscopy system in the Kretschmann's ATR geometry

嘉藤 勝也*,目黒 和幸**,小川 力**, 遠藤 治之**,大坊 真洋*

Katsuya Kato^{*}, Kazuyuki Meguro^{**}, Chikara Ogawa^{**}, Haruyuki Endo^{**}, Masahiro Daibo^{*}

*岩手大学、**岩手県工業技術センター

*Iwate University, **Iwate Industrial Research Institute,

キーワード: ラマン分光 (Raman Spectroscopy), 表面増強ラマン(Surface Enhanced Raman Scattering:SERS), 全反射減衰法 (Attenuated Total Reflection:ATR), 表面プラズモン (Surface Plasmon)

連絡先: 〒020-8551 盛岡市上田4-3-5 岩手大学工学部電気電子工学科 大坊研究室 大坊 真洋 Tel 019-621-6983 e-mail daibo@iwate-u.ac.jp

1. はじめに

ラマン散乱光は分子の固有振動を反映して いるため、ラマンスペクトルの測定により分 子構造の決定や分子種の同定が可能である。し かし、ラマン散乱効率は非常に低いために近 年までラマン分光の応用範囲は気体・液体・固 体の分野に限られ、表面や界面の研究にはほ とんど用いられなかった。ラマン分光が表面・ 界面の研究手段として注目されるようになった のは、表面増強ラマン散乱(Surface Enhanced Raman Scattering : SERS)が観測されてから である^[1]。SERSとは、ピリジンなどの分子が 銀などの金属表面に吸着したとき、そのラマ ン散乱強度が10²~10⁶倍に増大する現象であ る。化学や生物学の分野ではSERS効果を応用 して、微量の物質の同定や結合状態を知る手 段となっている。^{[2],[3]}また、10¹⁴倍以上の増 強度が実現されており単一分子の検出^{[4],[5]}に も可能になるなど広い分野で注目を浴びてい る研究分野でもある。

しかしながら、SERSの機構については定性 的に理解されているのみであり、定量的な理 解は得られていないのが現状である。SERSに は電磁気学的なものと化学的な増大メカニズ ムが混在しているといわれている。このうち 電磁気学的な増大メカニズムとは、表面プラ ズモンによる金属表面での電場増強作用によ り吸着分子のラマン散乱強度が増大するとい うものである。表面プラズモンはオットー配置 ^[6]あるいはクレッチマン配置^[7]でエバネッセン ト波を利用することで簡便かつ効率的に励起 できる。また、実験的にもATR法(attenuated total reflection)を用いることで表面プラズモ ンが励起されていることを確かめることも容 易である。

本研究の目的は、クレッチマンATR配置に よるラマン分光システムを構築し、ラマン散 乱強度の増強を狙うものである。

2. 原理

2.1 表面プラズモン

金属表面近傍に局在した自由電子の集団的 振動のモードを表面プラズモンと呼ぶ。表面 に局在した電荷が振動するため、表面プラズ モンが存在すると表面上で強い電場が生じる ことになる。平滑な表面を持った金属表面の 表面プラズモンの分散曲線は、伝播する通常 の光の分散曲線と交わらないため、金属表面 に光を照射しただけでは表面プラズモンを励 起することはできない。そこで、表面の微細 な粗さや、クレッチマン配置によるエバネッセ ント波を利用して表面プラズモンを励起させ ることが行われる。エバネッセント波を利用 する場合には、金属膜は適度に薄くなければ ならない。表面プラズモンが共鳴的に励起さ れる条件は、金属膜の膜厚や金属膜に接する 誘電体層の誘電率によって大きく変化するの で、これを利用したセンサーなどへの応用も なされている。

2.2 クレッチマン配置とATR法

Fig.1のようにプリズム底面に金属膜を直接 付けた構造をクレッチマン配置という。クレッ チマン配置における真空-金属界面での表面プ ラズモンの分散曲線をFig.2に示す。ドルーデ モデルによる金属の誘電関数を用いて、真空-金属界面での表面プラズモンの表面に平行な 成分の波数を表すと次のように表される。

$$k_{sp} = \frac{\omega}{c} \sqrt{\epsilon_1} \left(\frac{\omega^2 - \omega_p^2}{(\epsilon_1 + 1)\omega^2 - \omega_p^2} \right)^{1/2}$$

ここで、 ω は角振動数、cは真空中の光速度、 ϵ_1 は真空の誘電率、 ω_p は金属のプラズマ振動 数である。クレッチマン配置において入射光 の波長を固定(角振動数を ω_0)して、入射角を 臨界角 θ_C から90 deg.まで変化させる場合、入 射光の分散曲線は直線 から直線 まで変化 する。入射光と表面プラズモンの周波数と波 数が一致する角度 θ_{ATR} で、表面プラズモンを 励起することができる。入射角を掃引しなが ら反射光強度を検出する方法を全反射減衰法 (ATR法)と呼び、全反射領域のある角度で表 面プラズモンが励起されると反射率が減衰す る様子を見ることができる。

Fig. 2 クレッチマン配置の分散関係

3. 実験

実験では、光源にはArイオンレーザー(488 nm、35 mW)を用いた。

試料作製 金属薄膜材料には銀(ニラコ製、純 度99.999%)を選んだ。理由は、紫外領域に表 面プラズマ振動数をもち、波長488 nm にお いて銀の誘電率の虚部が他の金属に比べて小 さいからである^[8]。誘電率の虚部が大きいと、 表面プラズモンが励起されても減衰が激しく なる。カバーガラスを基板として、真空蒸着 法により成膜を行った。6×10⁻³Pa以下の高 真空環境下で、基板を150 に加熱した。膜 厚の測定には、テーラーホブソン製フォーム タリサーフPGI PULS1240型を用いた。

ラマン分光用の試料として、銀の薄膜上に 有機分子を吸着させたものを準備した。有機 分子にはDNAの塩基分子のひとつであるアデ ニン(分子量 135.15)を用いた。高純度分光用 エタノールにアデニンを溶かした溶液を作製 し、22 mm × 22 mmの銀の薄膜上に、マイク ロピペットを用いて50 µmol/l 滴下、自然乾燥 させることで試料を作製した。

ATR配置 Fig.3に実験で用いたATR配置を 示す。レーザー光は偏光子によってP偏光にし た。ビームスプリッターを介して一部の光をホ トダイオードで測定することで、レーザーの 出力の変化を測定した。シリンドリカルレンズ (BK7)を挿入することにより、プリズム(BK7) 底面においてレーザー光を平行光にした。プ リズムがθ動くと反射光は20動くことになり、 この反射光は20回転ステージに取り付けられ たホトダイオードを用いて検出した。試料とプ リズムとの接着にはNIKON製の浸漬オイルを 用いた。θ-20回転ステージはStage Controller を介してPCと接続されている。また、2つの ホトダイオードもA/Dコンバータを介してPC と接続されている。制御にはLabviewを用い、 $\theta - 2\theta$ 回転ステージの制御、測定データの収 集をすべて自動化した。

ラマン分光配置 Fig.4にクレッチマンATR配 置によるラマン分光で用いた光学系を示す。プ リズムの位置は反射光の強度が最も小さくな る角度に固定した。レンズを用いて散乱光の 一部を取り出し、エッジフィルタを通すことで レイリー光をカットし、ストークス光のみを 透過させた。フィルターを透過した光をファ イバーに導入し、分光器(Acton SpectraPro-300i、1200 gr/mm、ブレーズ波長 500 nm)に より分光し、液体窒素冷却CCD(Acton Spec-10:400BR)で検出した。

また、クレッチマンATR配置でのラマン分 光との比較のために、通常のラマン分光を行っ た。その光学系をFig.5に示す。この場合、入 射光は試料に対して浅い角度(~85 deg.)でP 偏光の光を入射した。散乱光の集光に関して はクレッチマンATR配置のラマン分光の場合 とと同じである。両者の集光立体角は約0.005 srである。

Fig. 3 ATR実験配置図

– 3 –

Fig. 4 クレッチマンATR配置によるラマン 分光の光学系

Fig. 5 通常のラマン分光の光学系

4. 実験結果と考察

4.1 膜厚の決定

クレッチマン配置では表面プラズモンを励 起するのに金属薄膜に最適な膜厚が存在する。 膜厚が厚すぎると、全反射によるエバネッセン ト光は金属中で減衰してしまい、裏面の空気-金属界面の表面プラズモンを励起できない。一 方、膜厚が薄すぎると表面プラズモンのモー ドが存在しても、金属中のキャリアの数が少 なくなるため、結果的に表面プラズモンによ る吸収ピークが観測できなくなる。以上の理 由により、最適な膜厚が存在する。実際に46.7 nm、63.0 nm、97.0 nmの膜厚の銀薄膜を用い てATRスペクトルを測定した。

その結果をFig.6に示す。(、 、 ×)印は実 験値であり、実線は Transfer Matrix 法^[9]によ るfitting curve である。Fig.6を見ると、膜厚 97.0 nm ではdipが浅く、ほとんど表面プラズ モンを励起できていないことがわかる。膜厚 46.7 nmと63.0 nmを比べると63.0 nmのほう がdipが深く、効率よく表面プラズモンが励起 されていることがわかる。しかしながら、成 膜による膜厚のばらつきが大きいため50.0~ 70.0 nm付近のAg膜を実験に使用した。

Fig. 6 膜厚を変えた場合のATRスペクトル

4.2 金属表面の誘電率変化に対するATR スペクトル

表面プラズモンは表面の誘電率の変化に対 して敏感に反応し、その変化はATRスペクト ルを測定することで確認できる。実験では銀 の薄膜にアデニン分子(0.1 mmol/l)を吸着させ た場合と、銀の薄膜のみの場合とのATRスペ クトルの変化を観察した。銀の薄膜は、十分 に深いdipが観測できた膜厚 50.6 nmのものを 使用した。実験結果をFig.7に示した。(、×) 印は実験値、実線は fitting curve である。アデ ニンを吸着させると、dipの位置は広角側にシ フトし、さらにdipが浅くなることがわかる。 表面プラズモンが表面の誘電率変化に対し、 非常に敏感に反応していることがわかる。dip の位置が広角側にシフトしたのは、分子が付 着したことにより表面プラズマ周波数が変化 し、表面プラズモンを励起できる角度が変化 したためであると考えられる。dipが浅くなっ たのは、分子の吸着により表面プラズモンの 共振を悪くしたためであると考えられる。

Fig. 7 銀の薄膜にアデニンを吸着させた場 合のATRスペクトル

4.3 ラマン分光

銀の薄膜にアデニンを吸着させた試料を用 いて、通常のラマン配置でのラマンスペクトル と、クレッチマンATR配置にした場合のラマン スペクトルを比較した。実験結果をFig.8に示 す。比較のために同じ量のアデニン(1 µmol/l) を吸着させたアルミ基板のラマンスペクトル を示す。基板を銀にすることで低波数(362、541、 736 cm⁻¹)の3つのピークが明らかに増大し ているのがわかる。これは銀表面の凹凸によ り表面プラズモンが励起され、電場増強が生 じたためと考えられる。一方、クレッチマン ATR配置のスペクトルは、1335、1551 cm⁻¹ のピークの強度が大きくなっている。励起光 の入射条件の違いで異なる振動モードが増大 されたものと考えられる。

Fig. 8 ATR配置の場合のラマンスペクトル との比較

5. まとめ

ATR測定によって、表面プラズモンの励起 による反射率の低下が顕著に現れる膜厚の銀 薄膜を作製できた。銀薄膜上にアデニン分子 を吸着させた場合、ATRスペクトルのdipの位 置が大きく変化することを確認できた。銀薄 膜上にアデニン分子を吸着させた場合のラマ ンスペクトルにおいて、通常のラマン配置の 場合とクレッチマンATR配置の場合の両方で ラマンピークを確認できた。

今後の課題として、平坦で均一な膜を作る ための成膜条件の絞り込みと、ラマン分光の 光学系の改良が挙げられる。

謝辞

本研究の一部は平成18年度NEDO産業技術 研究助成事業を受けて行ったものである。

参考文献

 M. Fleischmann, et al., Chem. Phys. Lett. 26, 163 (1974).

- S. Sun, et al., J. Phys. Chem. 94, 2005 (1990).
- E. S. Grabbe and R. P. Buck, J. Am. Chem. Soc. 111, 8362 (1989).
- S. Nie and S. R. Emory, Science 275, 1102 (1997).
- K. Kneipp, et al., Phys. Rev. Lett. 78, 1667 (1997).
- 6) A. Otto, Z. Phys. 216, 398 (1968).
- E. Kretschmann and H. Rarther, Z. Naturforsch. 239, 2135 (1968).
- 8) P.B.Jonson and R.W.Christy, PHYSICAL REVIEW B 6,12 (1972)
- 9)「光学薄膜の基礎理論」小檜山光信:オプ トロニクス社(2003)