計測自動制御学会東北支部第 236 回研究集会(2007.6.15) 資料番号 236-6

細粒度並列 VSLI プロセッサ用

ネットワークオンチップアーキテクチャの構成

Design of a Network-on-Chip Architecture for Fine-Grained Parallel VLSI Processor

藤岡与周、苫米地宣裕 Yoshichika Fujioka and Nobuhiro Tomabechi

八戸工業大学

Hachinohe Institute of Technology

キーワード:ネットワークオンチップ(Network-on-Chip),並列 VLSI プロセッサ(Parallel VLSI Processor),セミオートノマスパケットルーティング(Semi-Autonomous Packet Routing),制御メモリ容量の減少(Reduction of Control Complexity)

連絡先:〒031-8501 青森県八戸市大字妙字大開 88-1 八戸工業大学工学部システム情報工学科 藤岡与周 TEL: 0178-25-8063 FAX: 0178-25-1691 E-mail: fujioka@hi-tech.ac.jp

1. まえがき

これまでに,粗粒度パケット転送に基づくネ ットワークオンチップが提案されている. [1]-[3].本稿では,マイクロネットワークでの チップ内データ転送をフレキシブルかつプロ グラマブルとするため,細粒度パケット転送方 式を提案している[4]-[5].

ルータ構造をできるだけ簡単にするため,自 律的パケットデータ転送とオフラインのスケ ジューリング・アロケーションの組合せに基づ くプロトコルを採用しており,マイクロネット ワーク内でのパケット衝突が起こらない.また, ルータ内でパケット受信制御が自動的に行わ れるため,VLIW 制御メモリ容量を大幅に減少 できる.さらに,効果的なパケットデータ転送 を実現するため,パケット送信タイミング制御 のための新しい制御モジュールを提案してい る.

2. パケットデータ転送に基づく並列 VLSI プロセッサアーキテクチャ

2.1. パケットデータ転送に基づくマイクロ ネットワーク構造

図1に,複数のPEと,それらを接続するマ イクロネットワークを備えた細粒度 MIMD (Multi-Instruction Multi-Data)型並列プロセ ッサの提案構造を示す.ここで、処理アルゴリ ズムが与えられ,それがコントロールデータフ ローグラフ(CDFG)で表現されており,スケ ジューリング・アロケーションが予め決定され ていると仮定する.CDFG におけるそれぞれ のノードは PE に割当てられ,エッジに対応す る PE 間データ転送はマイクロネットワーク を経由してなされる.

マイクロネットワークには,図2に示すよう にパケット転送に用いる2本のデータ転送ラ インがあり,一つは左から右への方向のパケッ ト転送に用いられ,もう一つは右から左への方 向のパケット転送に用いられる.2つのPE間 のパケット転送はPEに直接接続されたルー タを経由してなされる.

プロセッサの基本操作はレジスタ間データ 転送に帰着されるため、もしパケットがマイク ロネットワークに適切に送信されると、データ 受信のための自動的なタイミング生成がなさ れる.このことはデータ受信のタイミング制御 をマイクロプログラム中で省略できることを 意味する.したがって、VLIW (Very Long Instruction Word) 制御メモリに要求される メモリ容量を大幅に減少できる.

2.2. セミオートノマスパケットルーティン グ

細粒度並列処理における頻繁なパケット転 送のためには多くのルータが要求されるため, ルータ内の制御機構はできるだけ単純でなけ ればならない.そこで,オフラインのスケジュ ーリング・アロケーションがセミオートノマス パケット転送に用いられる.これに必要となる 最適問題はパケット転送が起こらないという 制約下で全体の処理時間を最小化することで ある.もしこの制約が満たされるなら,ルータ 内のバッファキューメモリが不要になる.

図1 並列プロセッサアーキテクチャ

図2 パケット転送の例

FU: Functional Unit PDU: Programmable Delay Unit PG: Packet Generator LPG: Local Packet Generator PAC: PAcket Copier

図 3 パケット転送のためのルータと PE の 構成

2.3. パケットフォーマット

セミオートノマスパケットルーティングに 基づくことにより,1ビットのフラグ,宛先ア ドレスと1個のデータからなり,優先順位など 他のヘッダ情報が不要である,単純なパケット フォーマットを定義できる.フラグはパケット が有効なものか否かを表し,パケット送信制御

図4 プログラマブルディレイユニット

図 5 PDU の動作

を自律的にするために効果的に採用されている.

2.4. 階層的パケット転送

階層的に, PE 内でもパケット転送が利用される. PE 間および PE 内の両方の階層に関係するパケット転送の例を図2に示す.

[手続き 1] 宛先 PE アドレス 9 とデータを含 むパケットがパケットジェネレータ (PG)で 生成され,それが PE5 から送出される.PE5 からのフラグが有効であり,かつ隣のルータか らのフラグが無効であるため,PE5 からのパ ケットが自律的に PE9 へ送られる.

[手続き 2] パケットはルータ間をパイプライ ン方式で転送される .宛先アドレスと各ルータ アドレスの比較がなされ ,それらが等しくない 場合パケットは隣のルータへ転送される.

図7PGの動作

[手続き 3] 宛先 PE アドレスとルータアドレス 9 が等しいため,パケットは PE9 に転送され,フラグ情報が PE 内データ転送でのパケット送信のきっかけとして用いられる.

[手続き 4] PE9 では,新しいローカルパケットがローカルパケットジェネレータ(LPG)で 生成され, IREG4 に送られる.

3. プロセッシングエレメントの構成

図3はPEの構成を示しており,レジスタフ ァイルがプログラマブルディレィユニット (PDU)内に中間結果の一時記憶のために備 えられている.最も重要な制御機能はPDUか らパケットをセミオートノマスパケット転送 法に基づく指定されたタイミングで送出する ことである.PDUでは,遅延制御がプログラ ムされた遅延情報に従ってなされる.

3.1. プログラマブルディレィユニット

図 4 は複数のレジスタモジュールを備えた PDU の構造を示している.それぞれのレジス タモジュール内には、データの保存と遅延制御 それぞれのために、ひと つのレジスタとプリ セッタブルダウンカウンタ(PDC)が備えら れている.もし有効なフラグがデータとともに PDU に到着すれば、以下に示す遅延制御がな される.

[手続き 1] レジスタモジュールのアドレスと 待ちクロックステップ数がウェイトクロック ステップ ROM (WCSR)により生成される.

[手続き 2] 入力データがレジスタモジュール 内のデータレジスタに保存され,待ちクロック ステップ数が PDC にセットされる.

[手続き 3] 待ちクロックステップ数のカウン トダウンが開始される .もしカウントが零にな ると,データは PDU から LPG に有効フラグ とともに送られる.

以上の手続きにより,図5に示すように自律 的に遅延操作とデータ送出が行われる.

3.2. パケットジェネレータ

図 6 は有効フラグを伴うデータが入力後す ぐにパケットを生成する PG の構成を示して いる.また,図7にその動作概念を示す.制御 メモリ容量を減少するために,あらかじめプロ グラムされた相対 PE アドレスが導入されて おり,それが相対 PE アドレス ROM (RPAR) に保存されている.この相対 PE アドレスはも しパケットデータ転送方向が右方向であれば PE アドレスに加算される.一方,もしそれが 左方向であれば, PE アドレスから減算され る.

C.S.: Clock Step

図 8 CDFG の一部の例

図9提案アーキテクチャによる実行

4. プログラミングの比較

スケジューリングおよびアロケーションが 行われた CDFG のプログラミングを比較する. 提案するセミオートノマスパケットルーティ ングアーキテクチャでは,パケットの宛先アド レスを指定することによりパケット受信タイ ミングなどを自律的に生成可能となり,プログ ラミングに必要な制御メモリ容量を大幅に減 少できる特徴を有する.

ー例として,図8に示す CDFG について, (1)から(4)の各エッジは,図9に示すように以 下のようなパケットの流れに対応する.

(1)	PDU	LPG3	OBUF3
IREG4	FU		
(2)	PDU	LPG3	OBUF3
IREG5	FU		

(3)	FU	LPG4	OBUF4
IREG3	PDU		
(4)	PDU	LPG3	OBUF3
IREG2	PG2	URM2	PE5

ここで, IREGx はアドレス x をもつ入力レ ジスタであり, LPG で生成された宛先アドレ ス x のローカルパケットを選択的かつ自律的 に受信する機能を有する.また,OBUF は PE 内共通バスへの出力バッファであり,LPG で 生成されたパケットの有効フラグにより自律 的にバスへのパケット送出を制御する機能を 有する.さらに,FU は入力データのフラグの 状態から,入力データがそろってから演算結果 を出力するまでの遅延タイミング(図8の例で は3クロックステップ)を自律的に生成できる 機能を備えている.

以上より,図8の例のためにプログラミング が必要となるのは,PDU,LPG3,LPG4,PG2 である.それぞれのプログラミングは以下の通 りである.

PDUには,図 10 に示すように初期値として レジスタモジュール 1 のデータレジスタと PDC にそれぞれデータ a と待ちクロックステ ップ数 0 が記憶されている.同様に,レジスタ モジュール 2 のデータレジスタと PDC にはデ ータ b と待ちクロックステップ数 1 が記憶さ れている.さらに, PDU 内の制御メモリ WCSR には,図 8 の(3)の段階で PDU に入力 されるデータ c を記憶するためのレジスタモ ジュールアドレスと待ちクロックステップ数 7 がプログラムされる.

LPG は、図 6 の PG からアドレス加減算器 を省いた構造となっている。図 11 に示すよう に、LPG3 内のローカルパケット宛先アドレス を記憶する制御メモリには、図 8 の例の場合デ ータ a,b,c それぞれの行き先アドレスである 4,5,2 が順にプログラムされる.これによりデ ータ a,b,c は順に IREG4, IREG5, IREG2 宛

図 10 PDU の初期設定とプログラミング

図 11 LPG と PG のプログラミング

図9 従来のアーキテクチャによる実行

のローカルパケットにそれぞれ変換される.同 様に,LPG4にはFUから出力されるデータc の宛先アドレスである3がプログラムされる. さらに,PG2には,宛先PEアドレスである5 とこのPEアドレスの差をRPARにプログラ ムするだけでよい.

これに対し,従来のアーキテクチャでは,図 12 に示すようなデータの移動やメモリアクセ スなどが必要となる.このための VLIW プロ グラムは,表1に示すように,特に待ちクロッ

|--|

	LM			FU	FU			
VLIVV メモリ 亜山に	アド		WR	Л	Л	FU	I/O	
	V	КD		力	力	出力		
笛地.	ス			1	2			
1	а	RD		IN				(1)
2	b	RD			IN			(2)
3								
4								
5								
6	с		WR			OUT		(3)
7								
8								
9								
10								
11								
12	С	RD						
13							OUT	(4)

クステップなどのために無駄に制御メモリ容 量が必要となる.

5. 評価

提案する VLSI プロセッサと従来の VLIW 制御に基づく VLSI プロセッサとの制御メモ リ容量を比較する.提案する VLSI プロセッサ の制御メモリ容量 Mp は次式で与えられる.

 $Mp = P \log_2 U + 3X +$

$$D(\log_2 R + \log_2 M) \qquad (1)$$

最初の項はPE間パケット転送に用いられる パケットの総数Pと相対PEアドレスのビット 長 log2U との積であり,ここでUはアロケー ションで決定される PE 間パケット転送の最 大距離である.第2項はPE内パケット転送に 用いられるパケットの総数 X と宛先レジスタ アドレスのビット長3 との積である.第3項 は PDU に保存されるデータの総数 D と,レジ スタモジュールアドレスのビット長 log2R と

DU: Delay Unit : Register : 3state buffer ALC: Arithmetic Logical circuit

図 13 従来のパイプラインバスアーキテク

チャ

PE: Processing Element

(a) 構成

(b) VLIW 制御フィールド

図 14 クロックステップベース VLIW 方式 パイプラインバスアーキテクチャ

スケジューリングで決定される最大待ちクロ ックステップ数ビット長 log2M の和との積で ある.

次に,従来の VLIW 制御に基づくプロセッ サを評価してみる.図 13 にパイプラインバス アーキテクチャに基づく PE 構造を示す. VLIW 制御法は2種類がある.ひとつは図 14 に示すようにそれぞれのクロックステップ毎 にオンオフ制御信号が与えられる方法である. この場合,制御メモリ容量 Mv は次式で与えら

れる.

 $Mv = 13SN + D(\log_2 R + \log_2 M)$ (2)

ここで,S はクロックステップ総数である. 制御メモリ容量 Mv は制御信号がそれほどし ばしば変化しな い場合,メモリ容量が無駄に なる.

別の方法は,制御信号がオンになるようなク ロックステップ間隔の情報を使うことである. 制御信号がクロックステップC1でオンになり, 再びそれがオンになるもっとも近いクロック ステップがC2であるとする.データ転送のた めのC1とC2のクロックステップ間隔がプロ グラムされる.制御信号がそれほどしばしば変 化しない場合,この方法は制御メモリ容量の減 少に有用である.PE内の制御信号発生器 (CSG)が図15に示すようにプログラムされ たクロックステップ間隔に応じたそれぞれの 制御信号生成に用いられる.この場合,制御メ モリ容量 Mb は次式で与えられる.

$$Mb = 2P \log_2 M + 2X \log_2 M + D(\log_2 R + \log_2 M)$$
(3)

スケジューリングおよびアロケーションさ れた CDFG の制御メモリ容量の比較を検討す る.処理時間に対応するクロックステップ数 S は次式で与えられる.

表2 パケット転送方式とクロックステップ

ベース VLIW 方式の制御メモリ容量

Ν	Q	S [c.s.]	Mp [bit]	Mv [bit]	Mv/Mp
64	20	840	34560	712960	20.6
64	100	4200	204800	3596800	17.6
256	20	2760	158720	9251840	58.3
256	100	13800	896000	46361600	51.7
1024	20	10440	716800	139284480	194.3
1024	100	52200	3993600	696832000	174.5

表 3 パケット転送方式と制御信号ベース VLIW 方式の制御メモリ容量

Ν	Q	S [c.s.]	Mp [bit]	Mb [bit]	Mb/Mp		
64	20	840	34560	116480	3.4		
64	100	4200	204800	806400	3.9		
256	20	2760	158720	578560	3.6		
256	100	13800	896000	3507200	3.9		
1024	20	10440	716800	2764800	3.9		
1024	100	52200	3993600	16281600	4.1		

図 16 パケット転送方式とクロックステップ ベース VLIW 方式の制御メモリ容量の比較

 $S = Q(W + V) \tag{4}$

ここで,W,V,Qはそれぞれ次のとおりで ある.

W: 各ノードのクロックステップ数

V: 並列 PE 間データ転送の平均クロックス テップ数 Q: 処理の繰り返し数.ここで,ひとつの処 理はひとつのノードの処理と PE 間データ転 送に W+V クロックステップを要する.

図 16, 表 2 と表 3 は P=E, U=N/2, X=4E, D=E, R=Q/2, M=S/2, E=NQ, W=10, V=Uであ る場合の制御メモリ容量 Mp, Mv, Mbの比較 を示している.実際の処理応用では,提案アー キテクチャにより制御メモリ容量の大幅な減 少が期待できる.

6. むすび

提案する VLSI アーキテクチャは,不規則な データ転送がしばしば発生するような場合に, 制御メモリ容量の減少に非常に有用である.従 って,提案するマイクロネットワークアーキテ クチャ内のより多くの PE を同一面積のチッ プ内に備えることができ,並列処理能力を大幅 に改善できる.

参考文献

[1] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh and G. D. Micheli, "Design, synthesis and test of networks on chips," IEEE Design and Test of Computers, Vol. 22, No. 5, pp. 404-413, (2005).

[2] K. Goossens, J. Dielissen and A.
Radulescu, "AEthereal Network on Chip: Concepts, Architectures, and Implementations," IEEE Design and Test of Computers, Vol. 22, No. 5, pp. 414-421, (2005).

[3] S. J. Lee, K. Lee and H. J. Yoo, "Analysis and Implementation of Practical, Cost-Effective Network on Chips," IEEE Design and Test of Computers, Vol. 22, No. 5, pp. 422-433, (2005).

[4] Y. Honma, M. Kameyama, Y.Fujioka and N. Tomabechi "VLSIArchitecture Based on Packet Data Transfer

Scheme and Its Application," Proc. of 2005 IEEE Int. Symp. on Circuits and Systems, pp.1786-1789, (2005).

[5] Y. Fujioka, N. Tomabechi and M. Kameyama: "Functional-Unit-Level Packet Data Transfer Scheme for A Highly Parallel VLSI Processor," Proc. of Int. Conf. on Computers and Devices for Communication, CD-ROM, pp.9-13. (2006).