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Abstract

We give a parameterization of all stabilizing controllers with some fixed precompensator for single-input single-output
systems. The framework we use is the factorization approach, By using this parametrization, we give a parameterization

of all strictly causal stabilizing controllers.

1 Introduction

It is well known that the factorization approach to control
systems has the advantage that it embraces, within a single
framework, numerous linear systems such as continuous-
time as well as discrete-time systems, lumped as well as
distributed systems, one-dimensional as well as multidi-
mensional systems, etc.[1, 5]. Hence the result given in
this paper will be able to a number of models. In factoriza-
tion approach, when problems such as feedback stabiliza-
tion are studied, one can focus on the key aspects of the
problem under study rather than be distracted by the spe-
cial features of a particular class of linear systems. This
approach leads to conceptually simple and computation-
ally tractable solutions to many important and interesting
problems[4]. A transfer function of this approach is con-
sidered as the ratio of two stable causal transfer functions.
Further the set of the stable causal transfer functions is con-
sidered as a commutative ring.

The choice of the stabilizing controller is important for
the resulting closed loop because, in general, the stabiliz-
ing controllers are not unique. In the classical case, the
stabilizing controllers can be parameterized by the method
called Youla-KuCera-parameterization[1, 2, 3, 4, 5, 6].
However, it is also known that such parametrization may
include a stabilizing controllers which is not causal and
may result a direct loop (see Section 2).

The objective of this paper is to present an alter-
native parametrization of stabilizing controllers, that is
the parametrization of all strictly causal stabilizing con-
trollers. This parametrization will include neither any non-
causal stabilizing controller nor any direct loop.

2 Motivation

Let us consider the feedback system shown in Figure 1 of
the classical discrete-time system. Let

A ={f(z) € R(z)| f(z) has no poles on or @))
inside the unit circle in
the complex plane}

(z denotes the delay operator), which is the set of stable
causal transfer functions.

Now we let p = z + 1. Then we have the Bézout iden-
tity (z + 1)y + ¢ = 1 over .A. Using the Youla-Kudera-
parameterization, these y and x can be parametrized as
y=r,z=1— (z+ 1)r with a parameter r of A.

By lettingr = 1, we havey = land z = —z. In
this case, the stabilizing controller obtained from y and x
is —1/z. Unfortunately this is not causal.

Otherwise, by letting 1 = —1, we have y = —1 and
T = z + 2. In this case, the stabilizing controller obtained
from y and z is —1/(z + 2). This results a direct loop,
that is, the current input affects the whole closed feedback
system immediately. This loop is normally unsafe even if
the total feedback system is stable.

To avoid these situation, we will present the
parametrization of all strictly causal stabilizing controllers,
(i) which does not include any non-causal stabilizing con-
troller and (ii) which does not result any direct loop.
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Figure 1: Feedback system 3.



3 Preliminaries

We employ the factorization approach [1, 3, 4, 5] and the
symbols used in [7] and [8].

Denote by A a unique factorization domain that is the
set of stable causal transfer functions. The total field of
fractions of A is denoted by F; that is,

F={n/d|n,de A, d+#0}.

This F is considered to be the set of all possible transfer
functions. Let Z be a prime ideal of .4 with Z # A. Fur-
ther, let

P =
P, =

{a/be Flac A, be A— Z} and
{a/be Flae Z,be A— Z}.

A transfer function f is said to be causal (strictly causal)
if and only if f is in P (Ps).

We consider the feedback system ¥ [4, Ch.5, Fig-
ure 5.1] shown in Figure 1. In the figure, p denotes a plant
in P and c a controller. The stabilization problem, consid-
ered in this paper, follows the one developed in [1, 4, 5].
For details. the reader is referred to [4, 9, 8, 10].

Let H(p, c) denote the transfer matrix from [u} u}]*
to[e} e of the feedback system ¥, that is,

(1+pe)~t

H(p,c):= e(1+pc)~! —P(l"“i"c)—l] @

(1+pc)~?

(€ F2*2) provided that 1 + pc is nonzero. We say that the
plant p is stabilizable, p is stabilized by c, and c is a stabi-
lizing controller of p if and only if 1 + pc is nonzero and
H(p,c) € A?>*2, In the definition above, we do not men-
tion the causality of the stabilizing controller. However, it
is known that if a causal plant is stabilizable, there always
exists a causal stabilizing controller of the plant [9].

A pair a and b of A are said to be coprime (over A) if
and only if there exist z and y of A such that za + yb =1
holds. An ordered pair n and d of A are said to be a co-
prime factorization of p if and only if (i) d is nonzero, (ii)
p = n/d over F, and (iii) n and d are coprime[1, 4, 5].

A pair a and b of A are said to be factor coprime
(over A) if and only if the following holds: for any x of
A, if z divides both a and b, then z is a unit of A. A pair a
and b of F are said to be rationally factor coprime (over
J) if and only if there exist x1, y1, T2, y2 of A such that
(i) a = y1/z1 and b = ya/x2, (ii) y1 and z, are factor
coprime, and (iii) y2 and z, are factor coprime.

Because we investigate the set of some kind of stabi-

lizing controllers, we introduce some notations as follows

(peP):

S(p) = {ceF|H(pc)e A?*?%},
SP(p) = S(p)NP,
S'Ps(p) = S(p)nps-

In this paper, we consider a fixed causal precompen-
sator ¢ (€ P) as a part of a controller ¢ as shown in Fig-
ure 2 (¢ = cp(). We assume that ¢g and ¢ must be rationally
factor coprime.

We further introduce the set of all (causal) stabiliz-
ing controllers of p including a precompensator as follows

(»,(€P):

S(p;¢) = {collco € F, e € S(p),
¢o and ( are rationally
factor coprime} 3)
SP(p;¢) = {ecollco € P, coC € SP(p),

co and ( are rationally
factor coprime} 4)

For the notion of rational factor coprimeness, we have
the following proposition.

Proposition 1 Let a and b be elements of F. Suppose that
a and b are rationally factor coprime. Then ab is in A if
and only if both a and b are in A.

Proof. “If” part is obvious. Hence we show “Only if” part
only.

Let ayp, a4, by, bg be in A with a = a,/aq and b =
bn/ba such that each of pairs (an,aq), (bn,bda), (@n,bq)
and (by, aq) is factor coprime. Suppose now that ab is in
A. Then aq is a unit of A because the pairs (a,,aq) and
(bn,aq) are factor coprime. This means that a is in A.
Analogously b is also in A. O
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Figure 2: Feedback system with a precompensator.

4 All strictly causal stabilizing con-
trollers

In this section, we give the parameterization of all strictly
causal stabilizing controllers provided that Z is a principal
ideal. In this case, the precompensator ( is a generator of
Z. The following are primary results of this paper.

Theorem 1 Let p and ¢ be elements of P. Assume that p
and ¢ are rationally factor coprime. If H(pC, c) is over A,
then H (p, cC) is over A.

Theorem 2 Let p and { be elements of P. Suppose that p
and ¢ are rationally factor coprime. Then the following (i)
and (ii) hold.



0]
S(p;¢) = {co¢ | co € S(PC)}- (%)

(i) Let n, d, y, = be elements in A with p{ = n/d,
¢ = y/x such that ny + dx = u, where u is a unit of
A. Then

y+rd
z-—7Tn

S(m¢) ={¢

|re A, z—rn#0}. (6)

Theorem 3 Let p be a stabilizable plant of P. Assume that
Z is in a principal ideal and its generator is (.

(i) If pC is not stabilizable, then SPs(p) = 0.

(ii) Otherwise, there exist n, d, y and x be of A such
that p¢ = n/d and ny + dx = u, where u is a unit
of A. Then the set of all strictly causal stabilizing
controllers of p is given as follows:

y+rd
T—Tn

SPs(p) = {¢

|r € A} @)

In the following, we give the proof of Theorem 1 only.
The other two proofs for Theorems 2 and 3 are omitted.

Proof. We first consider two cases: (i) p{ = 0 and (ii)
p¢ # 0.

(i) p¢ = 0. Since p and ( are rationally factor coprime, p
and ( are in A by Proposition 1. We here consider further
two cases: (i-1) p = 0 and (i-2) p # 0.

(i-1) p = 0. Because H(0,c) is over A, ¢ is in A. Since
both ¢ and ¢ are in A, H(0, cC) is still over A.

(i-2) p # 0. Then ( is equal to 0. Because of p € A,
H(p,0) (= H(p, c()) is over A.

(ii) p¢ # O (that is, p # 0 and  # 0). We consider further
two cases: (ii-1) ¢ = 0 and (ii-2) ¢ # 0.

(ii-1) ¢ = 0. Suppose that H(p¢,0) is over .A. Then p¢
itself is in A from the (1, 2)-entry of H(p¢, 0). By Propo-
sition 1, p is in .A. Hence H (p, 0) is over A.

(ii-2) ¢ # 0. Now, all of p, ¢, and ¢ are nonzero. Suppose
that H(p(, 2) is over A. Let n, d, y and x be elements in
A with p¢ = ng/dp and ¢ = y/x such that

noy +dox =1 (8)

(This Bézout identity exists from Corollary 2.1.5 of [10]).
Because p and ( are rationally factor coprime, there ex-
ist n, d, ¢n. and {g in A such that p = n/d, { = {n/Cas
ng = néy, do = d¢4, and (n,{y) and (d, ¢,) are factor
coprime. Then from (8) we have

nnd + diL'Cd =1

and

_ | @+pe)”!
He) = | ey

{dde nm(d}
dyGn  dx(q |’

-p(1 +pCC)'1}
(14 pcg)™t

which is over A. O

Based on Theorem 3, we obtain the parametrization of
all strictly causal stabilizing controllers. In the following,
we consider the parametrization of all strictly causal stabi-
lizing controllers of two classical models (the continuous-
time system and the discrete-time system).

4.1 Classical Continuous-Time System

Consider the classical continuous-time systems. Let C
denote the closed right half-plane {s|Rs > 0} and C,.
denote the extended right half-plane, that is, C together
with the point at infinity. Then the set A of stable causal
transfer functions is given by

A={f(s) eR(s)| sup |f(s)] <oo}.
s€EC.

It is known that this A is a Euclidean domain with the de-
gree function § : (A — {0}) — Z,:

§(f) = “number of zeros of f in Cy.”

(See Chapter 2 of [4]). The ideal Z for the definition of the
causality is given as

Z={feA| f=n/d, n,deR]s],
deg(n) < deg(d)},

which is a prime and principal ideal. In fact, for f in A,
the ideal (f) is equal to Z if and only if §(f) = 1 and
deg(n) < deg(d), where n and d are polynomials of s
over R with f = n/d. The generator of Z can be, for
example,

1 -1 s+3 5+5
s+1's+2" (s+1)(s+2)" s2+2s+2’

and so on.

Example 1 Let

p=s/(s—1).
Consider to obtain the set SP;s(p) of all strictly causal
(proper) stabilizing controllers. First consider

1

Z =
(s+1

).
Thus, let
¢=1/(s+1).
Then
p¢ = s/((s = 1)(s +1)).




We have
ny + dx = u,
where
p¢ =n/d,
. s _s—1
TG+ T s+
___2(s+2) m=s—0.5
s+1 "7 s+1°
u___53+1.532+33+0.5
(s +1)3

Then u is a unit of A because the zeros of u are
—0.659 +1.5257 and — 0.1810.

Now SP(p) is given as in (7) by virtue of Corollary 3. For
example, letting
r="7/(s+2),

we obtain the following stabilizing controller:

452 + 305 + 2
283 + 552 —135s -2’

which is strictly causal. .

4.2 Classical Discrete-Time System

Consider next the classical discrete-time systems. In this
case, the sct A of stable causal transfer functions is given
as (1). It is also known that this A is a Euclidean domain
with the degree function § : (A — {0}) — Z:

8(f) =

“number of zeros of f inside
the close unit circle”

(See again Chapter 2 of [4]). The ideal Z for the definition
of the causality is given as

Z={feAlf=2z2fo, fo €A},

which is obviously a prime and principal ideal. In fact,
for f in A, the ideal (f) is equal to Z if and only if
f = zfo, where fo is a unit of A. The generator of Z
can be, for example,

z, (22 +22)/(z +3),

and so on.

Example 2 Let us consider the plant in Section 2, that is,
p = z + 1. Analogously to Example 1, consider again to
obtain the set SP,(p) of all strictly causal stabilizing con-
trollers. Let ( = z, that is,

Z=zA.
Then p{ = z(z + 1). We have

ny +dx =1,

where

p¢ =n/d,
n=zz+1), d=1,
y=0, z=1

Now SPs(p) is given as in (7). For example, letting
r = 7/(z + 2), we obtain the following stabilizing con-
troller:

—Tz
722 4+ 62 -2’
which is not stable but is strictly causal. .

5 Conclusion and Future Works

In this paper, we have given the parameterization of all
strictly causal stabilizing controllers. Other applications
of the method of this paper will include (i) the parameteri-
zation of all causal stabilizing controllers including the in-
tegrator and (ii) for multidimensional systems, the param-
eterization of all stabilizing controllers including all delay
operators, which will be presented in the future.
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