計測自動制御学会東北支部 第239回研究集会(2007.11.16)

資料番号 239-8

スクラッチ試験による溶射成膜 AE 特性

AE characteristics on thermal spray coatings using scratch test

〇山内秀高* 横田 理**

OHidetaka Yamauchi*, Osamu Yokota**

*日本大学大学院,**日本大学

*Graduate School, Nihon University **Nihon University

キーワード: AE イベント(AE event),溶射被膜(Thermal spray coating), 水平荷重(Horizontal load),垂直荷重(Vertical load), スクラッチ試験機(Scratch examination machine)

連絡先:〒963-1165 福島県郡山市田村町徳定字中河原1 日本大学工学部機械工学科 横田研究室 Tel:024-956-8772 E-mail:green_soda88@yahoo.co.jp

1. 緒言

溶射技術の向上に伴い,溶射被膜の適用が 各分野に拡大し,重要な表面加工技術になっ てきている.しかし,被膜自体の強度,密着 性の評価法は十分に解明されていない.その 原因として,被膜の機械的特性は,母材,溶 射粉末,溶射方法,溶射条件,被膜の表面処 理法等,様々な要因で左右される.このため, これらの要因に適った評価法の確立が必要 となる.

本試験では,垂直荷重を 0~200[N]までの 範囲で負荷できるスクラッチ試験機を用い て,作製した溶射被膜試験片のスクラッチ試 験を行い,そのときに発生する AE 信号とス クラッチ表層部との関連性について調べた ので報告する.

2. 試験方法

使用した母材は、市販の 60×45×5[mm]の SUS304 ステンレス鋼平板である.溶射被膜 の作製はアセチレン・酸素を用いた粉末式フ レーム溶射で行った.使用した溶射材はアル

ミナ、炭化タングステンである. 被膜作製の 前加工として母材にブラスト加工を施し,表 面を粗面化させた後、その表面に溶射材を被 覆させた. 粉末式フレーム溶射では各々の溶 射材で空冷,水冷①,水冷②の熱処理を施し た3種類の試験片を作製した.水冷①とはス テンレス製容器に試験片を入れ,容器の底面 を冷却水で冷やしながら溶射を行ったもの で、水冷②とは溶射後に 20 秒間試験片を直 接水中に入れたものである.これらの3種類 の試験片は各々膜厚を大,中,小と変えて作 製した.この他に、プラズマ溶射、高速フレ ーム溶射を施した膜厚 0.2mm, 0.4mm, 0.6mm, 0.8mm および 1.0mm の試験片の測定を行った. また,イオンプレーティングと電気めっきを 施した委託材料の試験片の測定も行った.

スクラッチ試験装置と AE 計測システムを Fig.1 に示す. Fig.1 のように, 圧子を 15mm/min で降下させると同時に, 試験片を 取り付けた移動テーブルを圧子に対して水 平方向に15mm/minで30秒間ひっかき試験を 行った. このとき, AE センサは試験片の裏 面に取り付け、そのしきい値は0.1mv に設定 した.しかし、AE イベントの検出が少ない ものについては0.06mv のしきい値で測定を 行った.次に顕微鏡を用いてひっかき痕の表 面状態の観察を行い、AE イベントの発生が 多い地点の亀裂や剥離の様子を調べた.

Fig.1 Examination device and AE measurement system

3. 結果および考察

ここでは一例として、アルミナ被膜を施し た試験片について記載する. Fig. 2, Fig. 3 および Fig. 4 には, 膜厚を①0.3mm, ②0.4mm, ③0.5mm としたアルミナ被膜で、空冷のひっ かき時間(30秒間)に対する荷重とAEイベン トの関係を示す.アルミナ被膜で空冷を施し た試験片3種類を比較すると、AE イベント の発生数が多い傾向にあるのは、Fig.4の膜 厚が最も大きい 0.5mm の試験片である.これ は、膜厚を大きくしたことにより気孔の数が 増え、細かな亀裂が生じやすくなったためと 考えられる.また、3種類の試験片の水平荷 重,垂直荷重,AE イベントの関係に注目す ると、最も AE が発生しやすい傾向にあるの は5秒~20秒間であり、この間に水平荷重 および垂直荷重の影響が顕著に現れやすい といえる. Fig.5 には時間の区分を 15 秒間 で区切り, (a)0秒~15秒, (b)16秒~30秒 としたときの振幅と AE イベントの関係を示 す. Fig.5(a)(b)より, 測定時間 16 秒~30 秒のときで,膜厚が大きいものほど数式の傾

きが小さくなり, 危険な破壊性起因の AE 信 号を発生する傾向にあることがわかる.

Fig.6には、アルミナ(空冷、膜厚 0.3mm) のひっかき痕の中心部分の写真、Table1に はアルミナ被膜についての AE イベント数の 平均を示す.アルミナにおいては、Fig.6に 示した地点で AE が多く発生しやすい傾向が ある.ひっかき痕の表面写真を見てみると、 剥離している箇所が確認できる.印を付けて ある箇所では、特に幾つかの気孔が生成され ていて、それらの付近に細かな亀裂が入り、 Fig.6の〇印部分の写真に示す剥離に至り、 多くの AE が発生したと考えられる.また、 Table1を見ると、アルミナ被膜の3種類の 各冷却方法を施した試験片においても、膜厚 が厚いほど AE イベントが多く検出されてい ることが分かる.

Tablel Alumina AE events

Thermal spray methods	AE events(average)		
	No.1	No.2	No.3
Air cooling	202	302	358
Water cooling(1)	105	136	322
Water cooling(2)	228	370	483

4. 結言

膜厚が同一の試験片において測定箇所に よって AE の発生数に差はあるものの,アル ミナ被膜の 3 種類の冷却方法を施した試験 片においては, 膜厚が大きいほど AE イベン トが検出されやすい傾向が得られた.

参考文献

- 1) 蓮井 淳: 溶射工学, 養賢堂 (1976)
- 2)乾 保之他:溶射技術入門,日本溶射協会(2006)
- 3)日本材料科学会:表面処理と材料, 裳華 房(1996)

Fig. 5 Relation between AE events and amplitude

Fig. 6 Photographs of scratch marks on alumina coating