デジタルホログラフィーによる氷結のその場観察

Digital Holography for in-situ Imaging of Freezing

及川隆博*,大坊真洋*

Takahiro Oikawa*, Masahiro Daibo*

*岩手大学

*Iwate University

キーワード: デジタルホログラフィー (Digital Holography),
マッハツェンダー干渉計 (Mach-Zehnder interferometer),
倒立顕微鏡 (Inverted Microscope), 氷結 (Freezing)

連絡先: 〒020-8551 盛岡市上田4-3-5 岩手大学工学部電気電子工学科 大坊研究室 大坊 真洋 Tel.: 019-621-6983 e-mail daibo@iwate-u.ac.jp

1. はじめに

ゲルや液体,気体のような半透明の物質の内部 の屈折率を対象に影響を与えずに解析する方法と してデジタルホログラフィーを応用する方法が用 いられている.物体にレーザを照射し,透過させ たレーザと元のレーザとを干渉させホログラムを 作成し,そのホログラムを解析することにより物 体内部の屈折率の分布の様子を測定することがで きる.本研究では対象として水が氷結する様子を 観察し,その進展の様子を解析することを目的と する.

2. 原理

2.1 デジタルホログラフィーの特徴

ホログラムは,レーザのようなコヒーレントな 光を物体に当て,物体で変調された光(物体光)と, 元のレーザの光(参照光)を重ね合わせた干渉縞を 記録する.この記録された干渉縞がホログラムで ある.光学系でのホログラムの再生には,記録し たホログラムに,記録の時と同じ波長の参照光を 当てる必要があるが,デジタルホログラフィーで は,参照光を当てる必要はなく,計算により元の物 体の立体情報を再生することができる.ホログラ ムの情報をデジタルデータとして記録できるため, ホログラムデータを連続的に取得することも可能 である.これにより,計算の高速化ができれば立 体情報を動画として再生することも可能となる.

2.2 ホログラム記録の配置

対象がほぼ透明な物体の場合にはレーザ光が物 体を透過できるため,物体の内部の構造を解析す ることができる.ホログラムを作成するためには, 物体を透過させた物体光と,参照光を,ホログラ ム平面上で重ね合わせる光学系とする.本研究で はマッハツェンダー干渉計(図1)を用いてホログラ ムを取得する.まず光源から出射したレーザ光を レンズで広げてコリメートし,ビームスプリッタ (BS)で物体光と参照光に分ける.物体光は物体の 中を透過する.その後,再びビームスプリッタを用 い物体光と参照光を重ね合わせる.物体内部を通 過する際に,物体内部の屈折率の変化による強度 や位相の変化により,参照光と物体光の間に位相 差を生じれば干渉を起こし,ホログラムが記録さ れる.ホログラム平面にはCMOSカメラが置かれ, ホログラムパターンをデジタル的にコンピュータ に取り込む.

図1 マッハツェンダー干渉計

2.3 ホログラムの再生

図 2にホログラム再生の物体平面,ホログラム 平面の幾何学的な位置関係を示す.

図2 ホログラム再生の座標系

参照光を平面波とするとき,レーザの波長をλ, 物体平面からホログラム平面(CMOSカメラ)まで の距離をd,ホログラム関数をh(x,y)とすると,ホ ログラムの情報から再生される物体平面上の点 $\Gamma(\xi,\eta)$ の回折は式(1)で示される.

$$\Gamma(\xi,\eta) = \frac{i}{\lambda} \int_{-\infty}^{\infty} \int_{\infty}^{\infty} h(x,y) \frac{\exp(-ik\rho)}{\rho} dxdy \quad (1)$$

ここで , $k=2\pi/\lambda$, $\rho=\sqrt{(x-\xi)^2+(y-\eta)^2+d^2}$ である .

3. 実験装置

3.1 干涉計

倒立顕微鏡を利用して図 3のマッハツェンダー 干渉計を構成する.マッハツェンダー干渉計とす るためには顕微鏡のステージに設置する試料を通 る物体光だけではなく,試料を通らない参照光を 通すために外部にビームスプリッタやミラーなど を配置する必要があり,これらを設置するための 光学ベースが必要となる.顕微鏡上部のミラー, ビームスプリッタ及びコリメータは同じベースの 上に設置し,そのベースごと上下させることがで きるようにする.このようにすると,同時に同じ 変位量で動くため,上部を上下に移動させても物 体光と参照光の光路長を一致させることができる.

図3 実験装置の構成

実際に作成した干渉計の概観を図4に示す.

図 4 干渉計(全体)

図 5は干渉計の上部を示している.ブレッドボー ド上にコリメータを設置し,そこからのビームを ビームスプリッタで2つに分け参照光と物体光とす る.参照光は図 6のミラーで反射され図 8のビーム スプリッタへと導かれる.物体光は左側のミラー で反射され,図7に置かれたの試料を透過し図 8の ビームスプリッタへと導かれる.ビームスプリッタ により重ね合わせられた参照光と物体光は,CMOS カメラへと導かれる.図7の試料ステージでは,試 料の下に配置されるペルチェ素子により試料を冷 却することにより,試料を氷結させる.

図 5 干渉計(上部)

図 6 干渉計(下部ミラー)

図 7 干渉計(試料ステージ)

4. 実験

針先を対象としてホログラム再生の予備実験を 行う.干渉計のステージ上に図 9のような針(直径 1.22mm)を設置,レーザ光を照射しホログラムを 記録する.白線枠内の部分から記録したホログラ ムを再生プログラムを用いて再生した結果が図 10 である.中央下部に針先が確認できる.

5. まとめ

現在はまだ予備実験の段階であり,実験ではあ まりはっきりとした像が得られていないが,この 原因はシミュレーション実験から,物体平面から ホログラム平面までの距離の大きさに対してホロ グラムの解像度が 2048 × 1536 ではこの程度の画

図 8 干涉計(内部BS)

図 9 対象とする物体

質が限界であるということが確認された.これを 改善するために,図11のように対物レンズ(MO) を用いて解像度を上げる予定である.対物レンズ を用いると再生の状態が変わるため,再生プログ ラムの修正も必要となる.

今後はサファイア板とカバーガラスではさんだ 水を試料として,ペルチェ素子を用いて冷却する ことにより氷結の様子を観察する.試料のカバー ガラス上に凹凸などの任意のパターンを書き込ん だ基板をつけ,そのパターンにより氷結の進行の 速度や状態の変化を解析することを考えている.

この研究成果の応用例としては,例えば氷結が 進みにくいパターンを見つけることができれば寒 冷地で使用する装置の氷結防止表面加工への応用 や農作物への霜の付着の抑制の研究への応用,進

図 10 再生結果

図 11 改良版干涉計

みやすいパターンを見つけることができれば任意 の形状の結晶を作り上げる方法や雪の結晶の解析 などに応用できると考えられる.

参考文献

- U. Schnars and W.P. Jueptner: Digital Holography, 41/44, Springer-Verlag(2005)
- Christian D. Depeursinge et al: Digital Holography Applied to Microscopy, 30/34, SPIE Vol. 4659(2002)