計測自動制御学会東北支部 第 242 回研究発表会(2008.5.13) 資料番号 242-7

円弧状に変形可能な2足ロボット足裏部の開発

Design of a Deformable Arc-shaped Sole for Biped Robots

落合章裕*,佐藤恭平**,三浦弘之***,山野光裕*,水戸部和久*

Akihiro Ochiai*, Kyohei Sato** , Hiroyuki Miura, Mitsuhiro Yamano* , Kazuhisa Mitobe*

*山形大学大学院 理工学研究科 **豊田合成株式会社 ***日本電営株式会社

*Graduate school of Science and Engineering, Yamagata University **Toyoda Gosei CO. LTD. ***Nihon Denei Corporation

キーワード:2足歩行ロボット(Biped walking robot),足裏形状(Sole shape), スライダ・クランク機構(Slider-crank mechanism), 接触センサ (Contact sensor),足裏センサ (Sole sensor)

連絡先:〒992-8510 山形県米沢市城南 4-3-16 山形大学工学部 機械システム工学科 山野研究室 落合章裕 Tel.:0238-26-3238 E-mail: ahiro2112@yahoo.co.jp

1. はじめに

近年,多くの2足歩行ロボットが開発されているが,足裏の形状に着目すると,平らな足裏を持つものと曲面状の足裏を持つものがある.

平らな足裏は,ヒューマノイドロボットのよ うに能動関節を持った2足歩行ロボットで多く 利用されている¹⁾²⁾.支持脚足裏平面でロボッ トに加わる重力や慣性力を支え,足裏を面接触 させながら歩行する.足裏面内や足首周辺に力 を検出するセンサが取り付けられ,床反力を測 定して制御に利用しているものが多い.

一方,曲面状の足裏は,関節の駆動力をほと んど用いない受動歩行ロボットで利用される³⁾. このようなロボットは,曲面状の足裏を床面上 で回転させながら歩行する.

歩行ロボットの足裏は,これまで形状が平面 または曲面で固定されたものが用いられてき た.形状を平面から曲面まで歩行中に変形でき れば,歩行ロボットの機能向上に役立つと考え られる.例えば,受動歩行ロボットは,エネル ギ効率が高いという利点を持つが,足裏が曲面 であるため,静止時に安定を保ちにくい.足裏 を平面に変形させれば,安定に静止することが 容易になる.また,足裏形状と歩行の関係を検 討した研究 4)5)も報告されている.今後,能動 関節のロボットについても,曲面状の足裏を使 った歩行法の開発が期待できる.

Fig. 1 Motion of the variable sole shape mechanism I.

2 足歩行ロボットの制御においては,脚先に 加わる反力の情報がよく使われる.曲面状の足 裏の場合は,床面との接触点が床面からの反力 の作用点となるため,その情報が制御に役立つ と考えられる.また,曲面状の足裏を持つロボ ットは,足裏の転がりに連動してロボットの姿 勢も変化する.支持脚足部の姿勢は,足裏面の 爪先側で床面と接触しているときは前に傾き, 踵側で接触しているときは後ろに傾く.そのた め,足裏の接触点検出は,ロボットの姿勢計測 にも役立つ.

筆者らのグループは,足裏形状を平面から曲 面まで変形できる機構を開発した⁶⁾.本稿では, この機構を改良して剛性や形状の精度を向上 させた機構と,足裏の接触点検出用センサの開 発について報告する.

2. 足裏機構

2.1 改良型足裏機構の設計

筆者らのグループでは,足裏を円弧状に変形

Fig. 2 Force acting on the variable sole mechanism I.

させる機構として,弾性変形する板をRCサー ボモータの駆動力で変形させる足裏機構を提 案している[®].この機構の側面図と写真をFig.1 とFig.2に示す.本稿では,この機構を足裏 機構I型と呼ぶことにする.

足裏機構 I 型は,小型の2足ロボットに装着 することを想定し,爪先から踵までの長さを 100 mm としている.足裏面を厚さ1 mm の 変性ポリエチレンテレフタレートの板で製作 し,その板の弾性変形により,足裏面の曲率を 変化させる.板の変形量は RC サーボモータに より調節される.RC サーボモータの軸の回転 運動を,スライダ・クランク機構により直線運 動に変え 板の中央部を1点で押すことにより, 板を平面から曲率半径 50 mm の曲面に近い形 状まで変形させることが出来る ⁶.

足裏機構 I 型は, Fig. 2 に示す矢印の方向か ら力を加えた際,足裏の形状が変形しやすいと いう欠点がある.変形量を小さくするために足 裏の板の強度を高めれば,足裏面の曲率を変え るための RC サーボモータへの負荷も大きくな るため,小型の RC サーボモータで駆動しにく くなる.

そこで,足裏機構 I 型の設計を改良して足裏機 構 II 型を製作した.足裏機構 II 型では,スラ イダ・クランク機構の先端部分を Fig.3のよう な形状に変更し,板とスライダ先端部分が2箇 所で線接触するようにしている.足裏機構 II 型の写真を Fig.4 に示す.足裏の板は足裏機構 I と同じ材質,寸法のものを用い,足裏面の最 小曲率半径も足裏機構 I と同じ50mm としてい

Fig. 3 Components to push the sole plate.

(a) flat sole

(b) curved sole

(c) the sole mechanism without sole plate

Fig.4 The sole mechanism II.

る.RC サーボモータには,日本遠隔制御社製 のDS8911 を用いている.RC サーボモータを 駆動して,足裏曲面の曲率Rを変化させた写真 を Fig.5 に示し,足裏機構 II を片足6自由度

(c) R= 100 mm (d) R= 140 mm Fig. 5 Motion of the sole mechanism II .

Fig. 6 The sole mechanism II attached to legs.

の 2 足ロボットに装着した写真を Fig. 6 に示 す.

2.2 性能評価

2.2.1 形状の評価

開発した機構の性能評価として,足裏の形状 が意図した曲率の円弧に変形しているかにつ いて評価する.測定方法として,足裏機構に入 力した半径の曲線と実際の足裏の形状との比 較を行う.まず,足裏機構の制御装置に足裏の 曲率半径Rを入力し,その状態で写真を撮影す る.撮影した写真の画像ファイルを使って,PC

 $\textbf{-6} \ \textbf{-5} \ \textbf{-4} \ \textbf{-3} \ \textbf{-2} \ \textbf{-1} \ \textbf{0} \ \textbf{1} \ \textbf{2} \ \textbf{3} \ \textbf{4} \ \textbf{5} \ \textbf{6}$

Fig. 7 Example of the measurement.

(a) Variable sole shape mechanism I

(b) Variable sole shape mechanism II

Fig. 8 Results of measurement.

上で半径 R の円と比較し,その誤差を測定する. Fig. 7 に測定の例を示す.機構の中心を0とし て左右に6分割し,それぞれの地点での誤差を 測定した.測定範囲は R=50 mm から R=140 mmとし,この範囲を10 mmごとに測定した. Fig. 8 (a) に足裏機構 I型, Fig. 8 (b) に足裏機 構 II 型の測定結果を示す.これらより,まず, 足裏機構 I型も足裏機構 II 型も全体的に足裏の 曲率半径が小さくなるにつれて,目標とする半 径と実際に足裏機構で作られた半径との誤差 が増加していることがわかる.しかし,足裏機

Fig. 9 Example of the measurement.

(a) without load

(b) with load

Fig. 10 Example of the measurement.

構 I 型よりも足裏機構 II 型の方が全体的に誤差 が小さくなっていることがわかった.これによ り,足裏機構 I 型から足裏機構 II 型に改良した ことによって足裏の曲率半径 R の再現性が向 上したことがわかった.

2.2.1 剛性の評価

足裏の曲率半径を 50 mm として Fig. 9 に示 すように 3 種類の方向から力を加え,足裏の変 形量を測定した.負荷の大きさは,小型の歩行 ロボットの重量を想定して 1.5 kgf とした. は足裏機構 I 型で足裏の部品を押し下げている

	without load	with load	difference
[mm]	20.04	19.26	0.78
[mm]	17.84	17.00	0.84
[mm]	14.09	13.23	0.86
average			0.83

Table 1Deformation of sole shapemechanism I

Table 2Deformation of sole shapemechanism II

	without load	with load	difference
[mm]	20.16	18.69	1.47
[mm]	18.53	18.02	0.51
[mm]	15.04	15.03	0.01
average			0.66

点, は足裏機構 II 型で足裏の部品を押し下げ ている点, はその中間点となっている.無負 荷のときの写真を Fig.10(a)に,負荷を加えた ときの写真を Fig.10(b)に示す.図中の矢印の 寸法を測定し,この差を算出する.

Table 1 に足裏機構 I 型の測定結果を, Table 2 に足裏機構 II 型の測定結果を示す. どちらの 機構も足裏の部品を押し下げている点におい て変形量が最も小さく, そこから離れるにした がって変形量は大きくなっている. と の中 間の では,足裏機構 II 型の方が小さな変形に なっており, ~ の平均も足裏機構 II 型の方 が小さい.

3. 足裏センサ

3.1 足裏センサに必要とされる条件

足裏曲面と床面との接触位置を検出するセンサは,次のような条件を満たす必要がある. (1)曲面上に装着できること

(2) 接触位置を細かい分解能で検出できること

Fig. 11 Measurement principle of sole sensor.

Fig. 12 Structure of the sole sensor.

Fig. 13 The sole sensor.

- (3) 足部に搭載できるように軽量かつ小型であ ること
- (4) 足裏面の転がりに影響を及ぼすような凹凸 のないこと

また,前章のような変形する足裏に取り付ける 場合は,足裏面の変形にも対応できることが必 要である.

3.2 **測定原理と仕様**

製作した足裏センサの測定原理を Fig. 11 に 示す.このセンサは接地点に応じて,可変抵抗 器と同様の原理で出力電圧が変化する.そのた め,検出した電圧によってどの位置で接してい

Fig. 14 Data flow of the sensor signal.

るかがわかる.可変抵抗器の役割を果たす部分 には, PC のキーボード内部に使用されている フィルム状の抵抗を使用した. このフィルムの 導体部は 0.13 [/mm] 程度の抵抗値を持って いる.また,センサの厚さを薄くするために導 電部分にアルミテープを,絶縁部分に OHP シ ートを使用している.フィルム状の抵抗,OHP シート,アルミテープを使用して Fig. 12, Fig. 13のような足裏センサを製作した.足裏センサ の中心には足裏の接地点を感知しやすいよう に, 導線ででっぱりを取り付けている. Fig. 11 内の47 Ωの固定抵抗器は,フィルム状の抵抗 の値が 14 Ω しかなく,電源電圧に対して抵 抗値が小さいため,電流値を抑えるために取り 付けている.また,足裏と床面が接触してない 状態を確実に検出するため, A/D 変換入力端子 とGNDの間を68 kΩの抵抗で接続している. そのため、足裏と床面が接触してないときは、 A/D 変換入力端子は0V となる.

このセンサの寸法は,前章の足裏機構に合う ように,幅 30 mm,全長 150 mm,厚さ 2 mm, 感知部 125 mm とした.また,このセンサは接 触を感知した時に電圧を 3.83~4.79 V の間で 出力するため,10 bit で A/D 変換すると 195 段階の分解能で位置を計測できる.センサの感 知部が 125 mm であるため,足裏センサの分解 能は 0.641 mm である.

3.3 PC との接続

検出されたセンサの信号はマイコン上で A/D 変換され, PC に送信される.マイコンには A/D 変換機能が搭載されている Microchip Technology Inc.の PIC16F876 を使用している. この PIC の A/D 変換の分解能が 10 bit である ため 0~5 Vの電圧を 1024 段階で測定できる. A/D 変換したデータを PIC から PC へ送信する 手段として, RS232Cによるシリアル通信を用 いている A/D 変換のチャンネル数を増やして, より多くのセンサを同時に接続できるように するため Fig. 14のように PIC を複数使用し, PIC 間を I²C 通信で接続している . PC 側での プログラムの開発環境として, PC の OS には Windows XP を用い,プログラム言語は C 言語 を用いている.コンパイルに gcc version 2.78.2.3 を用い, プログラムは Cygwin 上で実 行する.また,PIC 側でのプログラムの開発環 境として,使用するプログラム言語はC言語と し、コンパイラには CCS Inc.の PCM Version 3.224 を使用している.

3.4 足裏センサの評価実験

開発した足裏センサがどのような信号を出 力するか確認するための実験を行う.足裏セン サを円弧状に変形した足裏に取り付け,Fig.15 のようにロボットの足を手で持ち,押さえつけ ながら足先部分から踵部分まで (a) ~ (d)の 順で転がした.信号が足裏の接地点に応じて出 力されているかどうか確認しやすくするため に,転がす速度をできるだけ一定になるように して行った.また,実験は電子計りの上で行い, 足裏に加わる荷重がほぼ4kgf になるようにし て行った.

実験結果を Fig. 16 に示す.縦軸が距離,横軸 が時間となっている.縦軸において,0mmが 足先部分,100mmが踵部分に相当する.

足裏センサの値が時間経過に比例して右上

(d)

Fig. 15 Experiment of sole sensor.

(c)

がりになっているのがわかる.つまり,足裏セ ンサの信号が足裏の接地点の変化に応じて変 化していることがわかる.よって,足裏センサ が足裏の接地点を検出することができている と考えられる.足裏センサの値が小刻みに上下 している原因は,足裏機構を床面に押さえつけ ている人の手のぶれと考えられる.

4. おわりに

本稿では,改良型の足裏機構と足裏の接触点 検出用センサの開発について報告した.改良型 の足裏機構は,改良前のものに比べ,より円弧 に近い形状に変形することができ,床面からの 力による変形も小さく抑えることが出来た.曲 面状の足裏や平面から曲面まで変形する足裏 の接触点検出のため,薄くて柔軟なセンサを開 発し,実験により有効性を確認した.

参考文献

- 広瀬真人,竹中透,五味洋,小澤信明:人間型ロボット,日本ロボット学会誌, Vol. 15, No.7, 983/985 (1997)
- 2) 赤地一彦,他4名:ヒューマノイドロボット・HRP-2の

Fig. 16 Experiment result of sole sensor.

開発,川田技報 Vol.23, 20/25 (2004)

- 3) 池俣吉人, 佐野明人, 藤本英雄: 平衡点の大域的 安定化原理に基づくロバストな受動歩行, 日本ロボ ット学会誌, Vol. 26, No. 2, 178/183 (2008)
- 3) 浅野文彦,羅志偉:半円足の転がり効果を利用した 劣駆動仮想受動歩行(I)コンパス型モデルの駆動 力学,日本ロボット学会誌, Vol. 25, No. 4, 566/577 (2007)
- 5) 浅野文彦,羅志偉:半円足の転がり効果を利用した 劣駆動仮想受動歩行(II)性能解析と冗長モデルへ の拡張,日本ロボット学会誌,Vol.25,No4, 578/588 (2007)
- 6) 佐藤恭平,山野光裕,水戸部和久:二足歩行ロボットのための足裏形状可変機構の開発,計測自動制御学会東北支部第240回研究発表会資料 (2007)