生物の反射モデルのロボット制御への応用

Application of reflex arc model to robotic control

○湯田陽子*,有我祐一*,渡部慶二*,村松鋭一*,遠藤茂*

○Youko Yuda*, Yuichi Ariga*, Keiji Watanabe*, Eiichi Muramatsu*, Shigeru Endo*

*山形大学

*Yamagata University

キーワード: 反射(reflex action), 周波数符号化(frequency coding), 移動ロボット(mobile robot), アナログ回路(analog circuits), 行動決定(action decision)

連絡先: 〒992-8510 米沢市城南 4-3-16 山形大学理学研究科応用生命システム工学専攻科 渡部研究室 有我祐一, Tel & Fax: 0238(26)3754 E-mal: y_ariga@yz.yamagata-u.ac.jp

1 はじめに

近年ロボットの研究が盛んに行われ, 多種多 様な動作や機能を有するロボットが提案されて いる. その中では4脚や2脚で自立歩行できるロ ボット1,2)や,人の腕や手の滑らかな動きが出来 るロボット3,4)のように生物の動作を取入れてロボ ットを高度化しようという研究もなされている. しか しながら、ヒトなど生物を模倣した動作を獲得し ても、その行動の根源は離散事象であるプログラ ムで記述されているため、アナログである生物の 機能をモデル化したものとは言い難い. また, 神 経回路やニューロン間の情報伝達など, 脳など に存在するニューロンの活動状態のしくみをモ デル化する研究 5,6,7)はあるが、反射のような刺 激に対して引き起こされる一連の動作を一意に 決定する脳や脊髄の機能をモデル化した研究 はない.

そこで、本研究では生物に生まれつき備わっ ている反射行動を模倣するための新しいモデル を提案し、ロボットの行動の制御に応用すること を目的とする.このモデルは、生物が感覚器で 行っている周波数符号化理論を用いた情報伝 達の仕組みを周波数発生器で表現した周波数 符号化部と,下位の運動中枢である脊髄や延髄 の反射行動を引き起こすまでの仕組みを電気回 路で表現した動作決定部により構成される. 各 種の行動は電気回路の周波数特性を適切に設 計することで定義される。ただし、生物の運動制 御系において, 学習を含む随意的な運動を司る 大脳皮質や小脳を上位の運動中枢と分類し、原 始的な行動である反射行動や異なった反射行 動が連続して起こる本能, 歩行運動などのパタ ーン運動などを司る脊髄や延髄を下位の運動中 枢と分類するものとする.

このモデルを移動ロボットの制御に適用して、 その動作をシミュレーションで検証することで提 案手法の成立性を検討する.

2 周波数符号化理論とは

生物にとって感覚器官は、環境と中枢神経系とを橋渡しするインターフェースである。感覚器(受容器)は、刺激エネルギーを受けると、受容器電位(漸次的受容器電位)を発生させる。その受容器電位は、二次ニューロンに伝達された後に一連のインパルスへと転換される。周波数符号化とは、生物が刺激エネルギーを受けた時にそのエネルギーをインパルス数に変換する仕組みをいう。Fig.1に示した例のように刺激エネルギーが大きいほどインパルス数は増加する8。

この周波数符号化された情報を積極的に使ってロボットの動作に応用することが本研究の目的である.

3 生体の行動機能のモデル化

ここではまず生体の反射行動を分析する. その分析をもとに, 周波数符号化理論を模倣して生体の反射行動の機能をモデル化する. さらに,

Fig.1:Impulse activity of pressure receptor organ of cat's leg⁸⁾

(a) Example of oscillation pulse, (b) Relations between stimulation strength and number of nulses

機能モデルを電気回路で表現することでロボットの制御に応用するためのモデルを導出する.

3.1 生体の反射行動

生体が刺激を受けてから反射行動を引き起こすまでの流れを Fig.2 に示す. 感覚器(受容器)に刺激を受けると,刺激エネルギーはインパルス数に変換される. これが周波数符号化である. 周波数符号化された刺激情報が中枢系を経て作動体に送られ,各種の動作を引き起こす. このように周波数符号化された情報は電気的変化として伝導されることは判っている. しかし, 中枢系がその情報をどのように利用しているのかについては判っていない. そこで,モデル化するために次の仮定を設ける.

[仮定1]神経系には動作・行動が規定された 部位が存在する.

[仮定2]規定されている動作・行動は興奮状態に応じて選択される.

[仮定3]その選択は入力される周波数で決まり、中枢系・神経系などで周波数特性を利用している.

3.2 機能モデル

前節で示した周波数符号化理論と仮定1,2 にもとづき、Fig.2で示した生体の反射行動を機 能モデルへと表現を変換する.

Fig. 2: Reflex action of creature

まず、受容器を周波数符号化部とし、刺激の強さに応じた信号を出力する機能を有するものとする. 次に、神経系・中枢系を動作定義・決定部と置き換える. この部位は、予め規定されている動作・行動を信号に応じて選択する. その結果、Fig.2 のモデルは Fig.3 のように変換される.

3.3 機能モデルの回路表現

次に、機能モデルを電気回路で表現し、ロボットの制御に応用するためのモデルを導出する。まず、Fig.3の機能モデルでの周波数符号化部を周波数発生器(Voltage Controlled Oscillator(VCO))と正弦波発生器で表現し、周波数符号化回路とする。これにより、センサで取得した情報が周波数の情報に変換(周波数符号化)される。次に、Fig.3の動作定義・決定部を電気回路で表現し、動作決定回路とする。この動作決定回路の特徴は、回路の入出力信号によって動作が決定されるところである。これにより仮定3がみたされる。

Fig. 3: Function model of reflex

Fig. 4: Circuit expression of function

Fig. 5: Circuit element of function

最終的に動作決定回路の出力がアクチュエータに伝えられ、適応動作が生じる。以上の結果、Fig.3のモデルはFig.4のように変換される。

4 機能モデルを構成する 回路要素

ここでは、機能モデルの回路表現で用いている周波数符号化回路と動作決定回路について 詳述する.

4.1 周波数符号化回路

周波数符号化回路(Frequency Coding Circuit(FCC))は、Fig.5で示すように VCO と正弦波発生器で構成される。まず、VCO でセンサからの入力電圧を発振周波数に変換する。次に、正弦波発生器では VCO 出力に応じた周波数の正弦波を出力する。そのブロック図を Fig.6に示す。

FCC の入出力信号の関係式は次式のように示される.

$$\phi[n] = \phi[n-1] + c_1 v[n] + c_0 \tag{1}$$

$$y[n] = \sin(\phi[n]) \tag{2}$$

ここで、 C_0 はフリーランニング周波数を決める定数であり、 C_1 は入力の変化に対する周波数の変化の割合を決める定数である.

FCC の入出力特性は、Fig.7 に示す特性となる

Fig.6: Block chart of FCC

ように C_0 と C_1 を設定している。センサからの入力V(n)が 0 の場合は VCO の出力 $\phi(n)$ は 100 Hz となり y(n)は 100 Hz の正弦波を得る。 V(n)が大きくなると正弦波 y(n)の周波数は高くなり,逆にV(n)が小さくなると正弦波 y(n)の周波数は低くなる。これより,センサ信号の変化を周波数の変化に変換することが可能になる。

4.2 動作決定回路

動作決定回路は、Fig.5 で示したように定義 回路と比較器により構成される.

定義回路は,前段の周波数符号化回路(FCC) で発生した正弦波の周波数に応じて信号を出力する.この出力信号は,比較器において定義回路の入力信号と比較され,その結果が動作信号として出力される.

4.2.1 定義回路

定義回路は,動作を決定するうえで重要な回路であり,RLC 直列回路のようなアナログ回路で構成される。また,このアナログ回路の周波数特性を利用することで,仮定3をみたす。設計方法は,前段のFCCで出力される正弦波の周波数変動範囲内で,所望の周波数特性になるように定義回路を設計する。

Fig.7: I/O relation of FCC

たとえば、Fig.7に示した出力特性を持つ FCCを用いた場合、入力が 0 V の時に出力は 100 Hz あるから、定義回路の周波数特性は約 100±50 Hz の範囲が用いられることになる. 仮に、周波数特性のゲインが 100 Hz にピークを持つ回路を定義回路として利用しようとするならば、その回路の共振周波数を 100 Hz に設計する.

例として、RLC 直列回路を用いて説明する. まず、共振周波数を $100~\rm{Hz}$ 、減衰比 ζ を $0.05~\rm{E}$ と任意に決める. つぎに、これらの値から逆算し各素子を求める. すると LC が $0.025\times10^6~\rm{E}$ と かられる. 仮に L を $0.1~\rm{H}$ とおくと、C は $0.25~\rm{\mu}$ F という具合に RLC の各素子を求めることが出来る. この RLC 直列回路の周波数特性を Fig.8 に示す.

4.2.2 比較器の処理

比較器は、定義回路の入出力信号を比較することで後段のアクチュエータへの指令値を発生させるために必要な回路である.

比較器では、定義回路の入出力信号を乗算し、 その値をローパスフィルタに通すことで位相差と 振幅比を掛け合わせた信号を得ることができる. この値が動作決定回路の出力になる. 比較器で の処理は(3)式に示す.

$$\sin(\omega t) \cdot A \sin(\omega t + \phi)$$

$$= -\frac{A}{2} [\cos(2\omega t + \phi) - \cos(\phi)]$$

$$= \frac{A}{2} \cos(\phi) \quad \text{(LPF 処理後)}$$
(3)

ここで、 $\sin(\omega t)$ は定義回路の入力信号であり、 $A\sin(\omega t + \phi)$ は定義回路の出力信号である.

Fig. 8: Frequency response of RLC circuit

Fig. 9: Output of movement decision circuit

4.2.3 動作決定回路の出力信号について

先のRLC 直列回路の周波数特性 Fig.8 を 比較器で処理することで、Fig.9 に示した動作 決定回路の出力特性が得られる. 例えば、この 出力特性を用いて DC モータを制御する場合を 考えると、100 Hz では停止、100 Hz より低い 周波数では正回転、100 Hz より高い周波数で あれば逆回転するような動作信号を得る. このよ うに、アナログ回路の周波数特性を利用して、 種々の動作を発生することが可能になる.

5 シミュレーション

本研究で構築した生物の行動機能モデルを検証するため、車輪式移動ロボットに本モデルを搭載し、MATLAB6.1/Simulink用いてシミュレーション行った.本章ではまず、機能モデルを搭載した移動ロボットの構成を解説する.次にそれを使った2種類のシミュレーション結果を示す.

Fig. 10: 2 drive wheel type mobile robot

5.1 機能モデルを搭載した移動ロボットの構成

本研究で構築したモデル検証のため,本モデルを搭載するロボットとして車輪式移動ロボット2 駆動輪タイプ(Fig.10)を選んだ. 2駆動輪タイプの運動学にもとづくと,速度の関係式は(4)式で表すことができる 9).

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{\cos \theta}{2} & \frac{\cos \theta}{2} \\ \frac{\sin \theta}{2} & \frac{\sin \theta}{2} \\ \frac{1}{B} & -\frac{1}{B} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
(4)

ただし,

P(x,y):移動ロボットの代表点の位置

 $\theta: x$ 軸からの傾き(姿勢)

 v_1, v_2 :二つの駆動輪の円周速度

v_n:代表点の速度

B: ホイールベースの長さ

この2駆動輪タイプの移動ロボットに、変位センサを設置し、機能モデルを搭載した構成を Fig.11, Fig.12 に示す.

移動ロボットは変位センサが前に1個のみ 設置されており、ロボットの前方に存在する物 体との距離を電圧値として出力する. このとき、ロ ボット内部の信号の流れは Fig.12 のようになる. まず、変位センサの電圧値の変化は、機能モデルの FCC で周波数の変化となる. 次に、機能モデルの動作決定回路では、位相差と振幅比を掛け合わせた信号に変換される. そして、その信号が角速度指令値として移動ロボットの駆動部へ入力されると、ロボットが移動する. その変位をセンサが再び検出することで、一連のフィードバックが実現される.

これをもとに構成したロボットの制御系のブロック図を Fig.13 に示す.このブロック図において、動作決定回路の出力は左右のモータに同時に入力されるようになっているため、移動ロボットは直線的な動作しかしない.ここで用いた変位センサの出力特性は Fig.14(a)のように線形であると仮定し、0~3 V まで出力するとした.このときセンサと FCC 間にゲインを入れることで Fig.7の FCC の出力特性が Fig.14(b)になるように調節している.また、用いた定義回路は Fig.15 とした.そのときの動作決定回路の出力を Fig.16に示す.この回路は次のような動作となるように設計した.

· 100~104 Hz : 前進(正の信号)

· 104 Hz : 停止

104~110 Hz : 後退(負の信号)

Fig. 11: Mobile robot and sensor

Fig. 12: Flow of signal in mobile robot

Fig. 13: Block diagram of mobile robot

Fig. 14: Sensing property

Fig. 15: Definition circuit and frequency response

Fig. 16: Output of movement decision

5.2 シミュレーション結果 1 (前方に壁がある場合)

ここでは、移動ロボットの前方に壁がある場合についてシミュレーションを行った。移動ロボットは前方の壁に対して垂直方向から進行し、壁を検出すると、動作決定回路の出力(Fig.16)に従い壁と一定距離をおいて停止することができるか検証した。

シミュレーションの結果を Fig.17 に示す. それぞれ(a)変位センサの出力, (b)FCC 出力周波数, (c)モータへの角速度指令値, (d)移動ロボットの中心点の変位を示す.

シミュレーション開始直後は、センサは何も検知しないので、FCC からは 100 Hz が出力される. Fig.16 に示したように、動作決定回路は100 Hz で前進するように指令値を出力するため、ロボットは前進していた.

開始から 3.5 秒で変位センサが反応し始めると、それに伴い FCC 出力も変位し、100 Hz から 106 Hz まで上昇している。これに伴い、移動ロボットは前進から後退へ転じる。これは、前述のように動作決定回路の出力が 104 Hz 付近で正負に反転するようになっているためである。数回の前後動作のあと、FCC 出力周波数は 104 Hz に収束し、これに伴いモータへの角速度指令値は 0 になる。結果、移動ロボットの変位も86.1 cm の地点で停止した。(Fig.18 (b))

以上の結果より、移動ロボットの動作は、動作 決定回路の出力に従っており、壁への衝突を回 避し一定距離を保って停止する動作を確認する ことができた.

Fig. 17: Result of simulation

Fig. 18: Position of mobile robot in simulation

5.3 シミュレーション結果 2 (前方に移動物体がある場合)

次に、移動ロボットの前方に、前後に動く 移動物体がある場合についてシミュレーショ ンを行った.動作決定回路の出力(Fig.16)に 従うことで移動ロボットは、前方の目標物体の 移動に対して追従動作ができるか検証した. ただし、移動物体の変位は Fig.19 とする.

シミュレーション結果を Fig.20 に示す. それ ぞれ(a)変位センサの出力, (b)FCC 出力周波数, (c)モータへの角速度指令値, (d)移動物体の変位と移動ロボットの中心点の変位を示す.

Fig.20(d)より、2駆動輪型移動ロボットは次のように動作していた.

- 0~5秒:停止している移動物体に対し、 2駆動輪型移動ロボットが接近し、一定の 距離を保って停止する。
- ・ 5~10秒:移動物体が1mの位置に急激に変位すると,2駆動輪型移動ロボットは一定の距離に達するまで前進する.
- ・ 10~15秒:移動物体が接近してくるのに対し、2駆動輪型移動ロボットは一定の 距離を保ちながら後退する.
- ・ 15~25秒:移動物体がゆっくりと離れていくと、2駆動輪型移動ロボットは一定の 距離を保ちながら追従し、最終的に一定 距離を保って停止する.

このときの移動ロボットのセンサ出力は,

Fig.20(a)のように変化していた。移動物体が接近する $10\sim15$ 秒のところでセンサ出力は一番高くなっており、それにあわせて Fig.20(b)の

FCC 出力周波数も 106 Hz 付近を示し、最も高くなっている. その周波数信号にあわせて、

Fig.20(c)の角速度指令値は後退動作を生じる -0.4 rad/sec 付近を示している. これは

Fig.16 に示した動作決定回路の出力特性とほぼ一致していることがわかる.

以上の結果より、移動ロボットの動作は、動作決定回路の出力に従っており、ロボットの前方にある目標物体の移動に対して衝突せずに追従できることを確認した.

Fig. 19: Displacement of movement object

Fig. 20: Result of simulation

6 おわりに

本研究では、生物の反射行動を模倣する新しいモデルとして反射行動の機能モデルを提案した。また、その成立性を明らかにするため、移動ロボットの制御に提案手法を適用し、機能モデルに従うことで壁や移動物体に衝突することなく走行できるか検証を行った。その結果、移動ロボットが壁や移動物体との距離に応じて興奮度合い(周波数)を変化させ、かつ、興奮度合いに応じた動作をすることを確認した。これにより、提案手法の成立性を明らかにすることができた。

生物には多数の感覚器が備わっている。これをロボットに再現し、多くのセンサデータを一つのコンピュータで処理するには物理的に限界がある。しかし、この提案手法を用いることでその限界を克服し、より迅速な処理をすることができる可能性があると思われる。

今後の課題として、センサの個数や種類を増 やすことによるより複雑な動作への検証と、本モ デルの実機適用による検証があげられる.

参考文献

- 1) 藤田, ロボットエンターテインメント: 小型 4 脚自立ロボット, 日本ロボット学会誌, Vol.16,no.3, 313/314(1998)
- K.Hirai, The Development of Honda Humanoid Robot, Proc.IEEE Int.Conf.on Robotics and Automation, 1321/1326(1998)
- 3) 梶川,人間の上肢運動特徴に基づく移動物体補足動作の生成法,日本機械学会論文集(C編),67巻658号,1948/1955(2001)
- 4) 栗田,神経振動子を利用したロボットハンドによる マニピュレーション:関節角フィードバックによる 把持指切換え周期の適応的変更,日本機械学 会論文集(C編),**71巻705号**, 1654/1660(2005)
- 5) 臼井、神経回路のモデル化とシミュレーション、 バイオメカニズム学会誌、Vol.16.No3、 188/195(1992)
- 6) 佐伯、パルス型ハードウェアバーストニューロンモデル、電子情報通信学会論文誌(C)、Vol.J83-C.No3、213/219(2000)
- 7) 北島,シナプス可塑性のモデル-長期増強と長期 抑制を中心として,電子情報通信学会論文誌 (D-II), Vol.J78-D-II.No3,827/835(1995)

- 8) G.k.H. Zupanc, 山本(訳), 行動の神経生物学, 29/63, シュプリンガー・ジャパン, (2007)
- 9) 高野, ロボットの運動学, 239/270, オーム社 (2004)
- 10) 伊藤, 身体知システム論, 共立出版(2005)
- 11) William W.Lytton, 廣瀬(訳), from Computer to Brain~計算論的神経科学の基礎, 株式会社エヌ・ティー・エス(2004)
- 12) 三上, デジタル信号処理と DSP, 156/170, CQ 出版社(2001)
- 13) 野波, 西村, MATLAB による制御理論の基礎, 東京電気大学出版局(1998)
- 14) 水波, 昆虫-驚異の微小脳, 中公新書(2007)
- 15) 小林, ロボットモデリング, 1/110, オーム社 (2007)