計測自動制御学会東北支部 第246回研究集会 (2008.11.19) 資料番号 246-8

低バックラッシュ立体カムの フォロア・セルフアライニング機能

Self-aligning of the follower of low backlash 3D-cam

安沢 孝太*, 佐々木 裕之**, 鄭 聖熹***, 高橋 隆行*

Kouta Anzawa*, Hiroyuki Sasaki**, Seonghee Jeong***, Takayuki Takahashi*

*福島大学, **鶴岡工業高等専門学校, ***産業技術総合研究所

*Fukushima University, **Tsuruoka National College of Technology, ***Advanced Industrial Science and Technology.

キーワード: セルフアライニング(self-aligning),低バックラッシュ (low backlash),立体カム (3D-cam),指関節 (finger joint)

連絡先: 〒960-1296 福島市金谷川1福島大学理工学群共生システム理工学類 高橋研究室 安沢孝太, Tel.: (024)548-5259, Fax.: (024)548-5259, E-mail: anzawa@rb.sss.fukushima-u.ac.jp

1. はじめに

筆者らは,5本指を有する人型ロボットハン ドの開発¹⁾を行っている.ロボットハンドは 現在まで,様々な研究開発がなされている.ハ ンドの研究では,アクチュエータの運動を指 の運動へ変換する方法が一つの問題となる. アクチュエータからの運動を伝達,変換する 機械要素には,歯車,カム,ベルト,ワイヤ などが用いられている.例えば,Mouriらの Gifu Hand²⁾やUedaらのNAIST Hand³⁾は,フ ェイスギアやベベルギアを用いており,ドイ ツDLRのDLR/HIT Hand⁴⁾,川渕らのUniversal_Hand_02⁵⁾や山野らの5指ロボットハンド⁶⁾ は,ベルトやワイヤを用いている.それぞれ, バックラッシュを低減するための工夫がなされ ているが,前者は歯車特有のバックラッシュが 発生し,後者はベルトやワイヤ,バネの保守 が必要となる.そこで,筆者らは低バックラッ シュな立体カムを使用した指関節⁷⁾を開発し た.本論文では,文献⁷⁾で用いている低バック ラッシュ立体カムの設計方法とフォロア・セル フアライニング機能について報告する.次節 以降は,2節で指関節の設計方針,3節でカム の設計,4節で本機構の特徴であるフォロア・ セルフアライニング機能,5節で試作の検証と 評価について述べ,6節でまとめる.

2. 指関節の設計方針

指関節の設計方針として

1) モータ出力軸の運動方向を90[deg]変換

Fig. 1 Developed low-backlash 3D cam.

する.

- モータの入力180[deg]に対して,指関節 が100[deg]の出力を得る.
- 3) 低バックラッシュである.

を目標とする.

1)は指の方向にモータを挿入するため,モー タの運動方向を指の運動に変換することであ る.2)は人間の指関節,特に第二関節はおお よそ100[deg]の回転を行うからである.3)は関 節の制御を行う際に,バックラッシュが発生す ると精確な制御を行えないからである.後述 する設計では理論上バックラッシュが発生しな いと予想される.

低バックラッシュ立体カムの設計

3.1 モデルの構築

Fig. 1に開発する低バックラッシュ立体カム
 機構の概略図を, Fig. 2に設計を行う際のモデ
 ルを示す.Fig. 2(a)はモデルの初期位置を示
 し, (b)はカムがθ_i回転した状態でのモデルを
 表している.Table 1にはFig. 2に示されてい
 るパラメータを示す.Fig. 2に描かれている点

pは X_r 上に存在し,カムが回転すると X_r と共に回転する.なお,出力 θ_o は

$$\theta_o = \frac{100}{180} \theta_i - 10^{\circ} \tag{1}$$

と定義する.

- (b) Model for cam angle θ_i
- Fig. 2 Model of cam mechanism.

Table 1 Meaning of symbols on Fig. 2 .

Symbol	:	Meaning	
p	:	A point on X_r .	
a, b, c	:	Offset of X_i, Y_i, Z_i .	
$ heta_i$:	Angle of cam.	
θ_o	:	Angle of follower link.	
X_i, Y_i, Z_i	:	Coodinate of input axis.	
X_o, Y_o, Z_o	:	Coodinate of output	
		axis.	
X_c, Y_c, Z_c	:	Coodinate fixed cam.	
X_r, Y_r, Z_r	:	Coodinate rotated from	
		output coodinate.	

Symbol	:	Meaning			
d	:	Offset from output			
		coodinate.			
l_{1}, l_{2}	:	Length from the ori-			
		gin of suffix f coodi-			
		nate to root of the fol-			
		lower.			
w	:	Length of follower.			
$p_{1\mathrm{in}}, p_{1\mathrm{out}},$:	Follower's inner and			
$p_{2\mathrm{in}}, p_{2\mathrm{out}}$		outer points.			
α	:	Angle between two			
		followers.			
X_f, Z_f	:	Coodinate fixed fol-			
		lower.			

Table 2 Meaning of symbols on Fig. 3 .

として考える.カムからモデルを観察すると, $i 座標系がカムから - \theta_i$ 回転すると考えられ, $X_r \bot の点pは曲線を描くように移動していく.$ さらに<math>r 座標系に関しての詳細をFig.3 に示し,Table 2にパラメータを示す.

Fig. 3 Detailed model of X_r, Z_r .

Fig. 3はY軸の負方向から観察したr座標系 の図であるが,この位置は本設計でのフォロ アの初期位置である.初期位置でr座標系から dだけ平行移動した座標系をf座標系としてい る.ここで,dだけ平行移動しているのは,カ ムとフォロアの回転の際に,Fig. 3の斜線で示 されたカムの一部がフォロア軸と干渉してし まうことを防止するためである.

Fig. 3に示されている*p*_{1in} *p*_{1out} *p*_{2in} *p*_{2out}を それぞれのカム面を構成する4本の曲線とし, この曲線を求めて得たデータを用いてカム面 を生成する.

3.2 カム面の生成

カム面の生成について述べる.前述したよ うに,カム面の生成にはf座標系に示された 4点の軌跡を用いる.これらの点を求めるた めに,カムから観察した各点の位置を求める. ここで,カムに固定されたc座標系からf座標 系までの同次変換行列を式. (2)に示す.ここ で, $\sin \theta_i = S_i$, $\cos \theta_i = C_i$, $\sin \theta_o = S_o$, $\cos \theta_o = C_o$, $\sin 10^\circ = S_{10}$, $\cos 10^\circ = C_{10}$ とし ている.

さらに , f上にある p_{1in} , p_{1out} , p_{2in} , p_{2out} を 式. $(3)\sim(6)$ とする .

$${}^{f}p_{1\mathrm{in}} = \begin{pmatrix} l_{1} \\ 0 \\ 0 \\ 1 \end{pmatrix} \tag{3}$$

$${}^{f}p_{1\text{out}} = \begin{pmatrix} l_1 + w \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
(4)

$${}^{f}p_{2\mathrm{in}} = \begin{pmatrix} l_2 \cos \alpha \\ 0 \\ -l_2 \sin \alpha \\ 1 \end{pmatrix}$$
(5)

$${}^{f}p_{2\text{out}} = \begin{pmatrix} (l_{2}+w)\cos\alpha\\ 0\\ -(l_{2}+w)\sin\alpha\\ 1 \end{pmatrix}$$
(6)

$$\begin{aligned} {}^{c}_{f}T &= {}^{c}_{i}T^{i}_{o}T^{r}_{o}T^{r}_{f}T \\ &= \begin{pmatrix} C_{i} & S_{i} & 0 & 0 \\ -S_{i} & C_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} C_{o} & 0 & S_{o} & 0 \\ 0 & 1 & 0 & 0 \\ -S_{o} & 0 & C_{o} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -dS_{10} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -dC_{10} \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} C_{i}C_{o} & S_{i} & C_{i}S_{o} & -dS_{10}C_{i}C_{o} - dC_{10}C_{i}S_{o} + aC_{i} + bS_{i} \\ -S_{i}C_{o} & C_{i} & -S_{i}S_{o} & dS_{10}S_{i}C_{o} + dC_{10}S_{i}S_{o} - aS_{i} + bC_{i} \\ -S_{o} & 0 & C_{o} & -dS_{10}S_{o} - dC_{10}C_{o} + c \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

式. (2)~(6)から式. (7)~(10)のように*c*座標 系からの点の位置を求められる.

これらの式から得られた結果を用いて3D CADソフトSolidWorks上でシミュレーション を行った結果をFig.4に示す.このシミュレー ションは,フォロアの中心軸の移動する軌跡 を示している.実際のフォロアはある径を有 するため,その径の分のオフセットが必要と なる.SolidWorks上でのデータにオフセット を加えたものをFig.5に示す.オフセットには SolidWorksのオフセットサーフェス機能を使 用した.

Fig. 4 Data simulation on SolidWorks.

これらの結果から設計を行い, Fig. 1のカム

$${}^{c}p_{1\mathrm{in}} = \begin{pmatrix} (l_{1} - dS_{10^{\circ}})C_{i}C_{o} - dC_{10^{\circ}}C_{i}S_{o} + aC_{i} + bS_{i} \\ -(l_{1} - dS_{10^{\circ}})S_{i}C_{o} + dC_{10^{\circ}}S_{i}S_{o} - aS_{i} + bC_{i} \\ -(l_{1} - dS_{10^{\circ}})S_{o} - dC_{10^{\circ}}C_{o} + c \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} ((l_{1} + w) - dS_{10^{\circ}})C_{i}C_{o} - dC_{10^{\circ}}C_{i}S_{o} + aC_{i} + bS_{i} \\ 1 \end{pmatrix}$$

$$(7)$$

$${}^{c}p_{1\text{out}} = \begin{pmatrix} ((l_{1}+w)-aS_{10^{\circ}})C_{i}C_{o}-aC_{10^{\circ}}C_{i}S_{o}+aC_{i}+bS_{i}\\ -((l_{1}+w)-dS_{10^{\circ}})S_{i}C_{o}+dC_{10^{\circ}}S_{i}S_{o}-aS_{i}+bC_{i}\\ -((l_{1}+w)-dS_{10^{\circ}})S_{o}-dC_{10^{\circ}}C_{o}+c\\ 1 \end{pmatrix}$$

$$(8)$$

$${}^{c}p_{2\mathrm{in}} = \begin{pmatrix} (l_{2}C_{\alpha} - dS_{10^{\circ}})C_{i}C_{o} + (-l_{2}S_{\alpha} - dC_{10^{\circ}})C_{i}S_{o} + aC_{i} + bS_{i} \\ -(l_{2}C_{\alpha} - dS_{10^{\circ}})S_{i}C_{o} - (-l_{2}S_{\alpha} - dC_{10^{\circ}})S_{i}S_{o} - aS_{i} + bC_{i} \\ -(l_{2}C_{\alpha} - dS_{10^{\circ}})S_{o} + (-l_{2}S_{\alpha} - dC_{10^{\circ}})C_{o} + c \\ 1 \end{pmatrix}$$

$$(9)$$

$${}^{c}p_{2\text{out}} = \begin{pmatrix} ((l_{2}+w)C_{\alpha}-dS_{10^{\circ}})C_{i}C_{o}+(-(l_{2}+w)S_{\alpha}-dC_{10^{\circ}})C_{i}S_{o}+aC_{i}+bS_{i}\\ -((l_{2}+w)C_{\alpha}-dS_{10^{\circ}})S_{i}C_{o}-(-(l_{2}+w)S_{\alpha}-dC_{10^{\circ}})S_{i}S_{o}-aS_{i}+bC_{i}\\ -((l_{2}+w)C_{\alpha}-dS_{10^{\circ}})S_{o}+(-(l_{2}+w)S_{\alpha}-dC_{10^{\circ}})C_{o}+c\\ 1 \end{pmatrix}$$
(10)

Fig. 5 Offset cam faces on SolidWorks.

機構が得られる.今回のカム設計における各 パラメータをTable 3に示す.

Table 3 Parameter	of	the cam.
Parameter		Value
a	:	5[mm]
b	:	0[mm]
c		6[mm]
d		$0.3[\mathrm{mm}]$
l_1		$1.4[\mathrm{mm}]$
l_2		$1.6[\mathrm{mm}]$
w		1[mm]
lpha		$100[\deg]$
Follower radius		$1.5[\mathrm{mm}]$
Follower shaft radius		$1.25[\mathrm{mm}]$

フォロア・セルフアライニング 機能

本立体カム機構の特徴であるフォロア・セル フアライニング機能について述べる.フォロ ア・セルフアライニング機能とはフォロア軸 上をフォロアリンクが自由移動可能,すなわ り固定されていなくとも,Fig.6に示すように (a)立体カムと組み合わせることによって,(b) フォロアリンクのフォロア軸上の移動が拘束 される機能である.そのため,Fig.7の条件を 用いている.Fig.7から次の条件を満たすこと で,フォロア・セルフアライニング機能を実現

(a)Assembly with cam

(b)Fixed follower

Fig. 6 Follower self-aligning function.

出来ると考える.

条件1 2つのフォロアがカム面と接触している.

条件2 2つのフォロアとカム面の接触点で,法 線ベクトルのフォロア軸方向ベクトルが 互いに逆である.

これらの条件を求めるために, Fig. 8に示さ れる各カム面の法線ベクトルN_mを求める.法 線ベクトルは

$$\boldsymbol{N}_{m} = \begin{pmatrix} N_{mx} \\ N_{my} \\ N_{mz} \end{pmatrix}$$
(11)

で表す.ここで,m = 12である.以降のベク トルも同じ表現方法を用いる.法線ベクトル は, p_{1in} , p_{1out} , p_{2in} , p_{2out} を θ_i で微分するこ とで得られる接線ベクトル T_m と,曲面を構成 している外側と内側の点それぞれに向かう方

Fig. 7 Principle of self-aligning of the follower.

Fig. 8 Normal vector, tangent vector, directional vector on ${}^{c}_{f}P_{1out}, {}^{c}_{f}P_{2out}$ curves.

向ベクトル V_m との外積を用いて得られる.こ こで, θ_o は式.(1)で示されているよう θ_i の従属 変数なので,各ベクトルは θ_i のみの関数とな る.なお,各カム面は2本の曲線で示されてい るので,検証の際には2本の曲線の法線ベクト ルの合成ベクトルを用いた.

法線ベクトルのフォロア軸方向のベクトル *S_m*を求めるために, Fig. 10に示すフォロア軸 と平行な単位ベクトル

$${}_{i}^{c}\boldsymbol{P} = \begin{pmatrix} -\sin\theta_{i} \\ \cos\theta_{i} \\ 0 \end{pmatrix}$$
(12)

を考える. N_m とPより S_m を次の様に求める.

$$S_m = |N_m| \cos \beta_i^c P$$

=
$$\frac{N_m \cdot {}_i^c P}{|{}_i^c P|} {}_i^c P$$

=
$$(N_{mx} P_x + N_{my} P_x) {}_i^c P \qquad (13)$$

前述したフォロア・セルフアライニング機能 の条件2を $-S_1 \cdot S_2$ として評価する.その結 果をFig. 11に示す.

Fig. 9 Unit vector $_{i}^{c}\boldsymbol{P}$.

Fig. 10 Directional vector of follower shaft.

2つのフォロアがカム面に接触しており,さ らにFig. 11よりどのカム角度でも2つの軸方 向のベクトルが逆になっているということか ら,フォロア・セルフアライニング機能はどの カム角度でも効果が現れる可能性がある.

5. カムの試作と検証

前節までに求めたパラメータやフォロア・セ ルフアライニング機能の確認のために実際に

Fig. 11 Effect of self-aligning function.

製作したカムをFig. 12に示す.Fig. 12は指関節 として使用する際の4倍の大きさで製作した.

Fig. 12 Fabricated cam.

試作したカムを検証してみると,カムの動 作範囲の一部に,比較的大きなバックラッシュ (カム面とフォロア間の隙間が0.1[mm]程度)が 見られた.3次元精密測定器でカム面の形状を 計測したところ,設計したカムと若干の相違 が見られた.このことから,バックラッシュの 原因は,製造上の問題ではないかと考えてい るが,現在,設計面を含めて,さらに詳しい 検討を進めている.

このように,カムの動作範囲全域にわたる 検証は未達成であるが,比較的バックラッシュ の少ないところで検証したところ,フォロア リンクのフォロア軸上の移動が拘束されてい ることを確認し,フォロア・セルフアライニン グ機能が有効となる可能性を確認した.

Front view Side view

Fig. 13 Movement of cam system.

6. おわりに

人型ロボットハンドの指関節に使用する低 バックラッシュ立体カムの設計方法とフォロ ア・セルフアライニング機能について報告し た.目標とする運動の変換を行うことが出来 たが,本カムの特徴である低バックラッシュや フォロア・セルフアライニング機能の確認まで には至らなかった.現状では,フォロアを特定 の位置で押しネジなどを使用して固定するこ とで使用可能である.今回のカムを製作する 前に、ポリアセタールでの試作を行っていた が,材料によっても動きが異なる.これは弾性 要素が関わるためであると推測される.試作 したカムの精密測定を行って、バックラッシュ 発生の原因を突き止めるとともに、カムの製 作工程と設計の両面からの検討を進める予定 である.

参考文献

 1) 佐々木 裕之,鄭 聖熹,高橋 隆行:低バック ラッシュ立体カムを用いた5本指ロボットハン ド機構設計,計測自動制御学会東北支部 第 240回研究集会,2007.

- Tetsuya Mouri, Haruhisa Kawasaki, Keisuke Yoshikawa, Jun Takai, Satoshi Ito: Anthropomorphic Robot Hand: Gifu Hand III, ICCA, 1288/1293, 2002.
- 3) Jun Ueda, Yutaka Ishida, Masahiro Kondo, Tsukasa Ogasawara: Development of the NAIST-Hand with Vision-based Tactile Fingertip Sensor, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2332/2337, 2005.
- 4) H.Liu, K.Wu, P.Meusel, N.Seitz, G.Hirzinger, M.H.Jin, Y.W.Liu, S.W.Fan, T.Lan, Z.P.Chen: Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II, IEEE/RSJ International Conference on Intelligent Robots and Systems, 3692/3697, 2008.
- 5) 川渕 一郎, 星野 聖: 人型ロボットハンドの機構, 電子情報通信学会, 信学技報, ヒューマン情報処理学会「手」研究会, 57/62, 2005.
- 6) 山野 郁男,前野 隆司: 超音波モータと弾性要素を用いた5指ロボットハンドの開発,日本ロボット学会誌,23-8,977/985,2005.
- 7) 鄭 聖熹, 佐々木 裕之, 高橋 隆行: 立体カム機 構を用いた小型・軽量, 少バックラッシュ指関 節の開発, 第25回日本ロボット学会学術講演 会, 講演概要CDROM 3M31, 2007.