立位傾斜時の足関節トルク制御則の時間変化と安定性の関係

Relation between temporal parameter change of ankle torque control law and human postural stability during upright swing.

○後藤晃史*,石田水里**,佐川貢一*

OAkifumi Goto*, Mizuri Ishida**, Koichi Sagawa*

*弘前大学, **鳴海病院

*Hirosaki University, **Narumi Memorial Hospital

キーワード: 姿勢制御 (Postural control), 安定性 (Stability), 倒立振り子 (Inverted pendulum), PD制御 (Proportional-derivative control), 極配置 (Pole assignment)

連絡先: 〒036-8561 青森県弘前市文京町3 弘前大学大学院 理工学研究科 後藤 晃史, Tel./Fax.: (0172)39-3691, E-mail: h08gs513@stu.hirosaki-u.ac.jp

1. 緒言

身体運動の障害を持つ患者や高齢者を対象とし て、立位姿勢制御能力を検査する理学療法が実施 されている.しかし、立位姿勢制御能力の定量的 な評価指標は確立しておらず、検査結果は検者の 主観に依存している.そのため、治療方針や指導 方針を適切に作成することができない.

そこで、検者が実施する立位姿勢制御能力の定 量評価指標の導出を目的として、ヒトの立位姿勢 を、足関節で発生するトルクがPD制御される倒立 振り子モデルに近似し、自発的に変化させる身体 角度から求めた制御パラメータを安定性の指標と する試みが行われている¹⁾²⁾.しかし足関節トル クの制御則を時不変であると仮定しているため、 直立、傾斜、直立のように一連の動作が実施され たときの制御則の推定は困難である.

本報告では、傾斜動作制御時の足関節トルクが 時変PD制御則に従うと仮定し、固定トレース法 を使用して,足関節トルクの制御則パラメータの 時間変化と,姿勢制御系の極配置の時間変化から, 立位姿勢制御能力の定量評価につながる指標の導 出を試みる.

2. 姿勢制御則パラメータ推定の 原理

2.1 倒立単振り子モデル

本報告では、立位時の人体をFig.1に示すように、 矢状面内の倒立単振り子モデルに近似する.身体角 度を θ 、矢状面での足関節まわりの慣性モーメント をJ、体重から足部質量を除いた重量をm、重力加 速度をg、足関節から体重心までの距離を l_g 、制御 トルクの比例ゲインを K_P 、微分ゲインを K_D 、目標 角度を θ_d 、足関節トルクを τ とする.sin $\theta \approx \theta$ とす ると、倒立振り子モデルの運動方程式はLagrange 法を利用して

$$J\ddot{\theta} - mgl_g\theta = \tau \tag{1}$$

Fig. 1 Inverted pendulum model of standing posture

で表される.さらに,姿勢制御のための足関節で 発生するトルクが身体角度に変化をもたらす能動 的トルクと重力に対する姿勢保持トルクで構成さ れている³⁾と考えると,筋による足関節トルク_ては

$$au = K_P(heta_d - heta) + K_D(\dot{ heta}_d - \dot{ heta}) - mgl_g heta$$
 (2)

で表すことができる.よって倒立振り子モデルの 運動方程式は(1)式と(2)式の釣り合いより

$$J\ddot{\theta} = K_P(\theta_d - \theta) + K_D(\dot{\theta}_d - \dot{\theta}) \tag{3}$$

で与えられる.(3)式は水平振り子のPD制御と等 価である.ここで,足関節まわりの回転慣性モー メントJ,体重から足部質量を除いた重量*m*,足関 節から体重心までの距離*lg*は,被験者の各部分長 を測定し,阿江ら⁴⁾によって報告されている身体 部分特性定数を使用して算出した.それらの定数 は現在の日本の若年成人男女の力学的解析に利用 可能とされている⁵⁾.

2.2 固定トレース法

固定忘却ゲインを導入した逐次最小二乗法⁶⁾は 時変パラメータ推定が可能であるが,推定に適さ ない入力信号が持続した場合に,推定に必要とさ れる過去情報が忘却されてしまい,得られる推定 結果が不安定になる.そこで本報告では,固定ト レース法⁷⁾を使用して時変パラメータ推定を行っ た.同定対象が,時刻kのときの出力をy(k),パラ メータベクトルをA(k),回帰ベクトルを $\phi(k)$ とし た線形回帰モデル $y(k) = A(k)^T \phi(k)$ で表されると き,固定トレース法は

$$A(0) = A_0 \quad 初期推定値 \tag{4}$$

$$P(0) = \gamma I$$
 初期行列ゲイン (5)

$$K(k) = \frac{P(k-1)\phi(k)}{1+\phi^T(k)P(k-1)\phi(k)}$$
(6)

$$e(k) = y(k) - \phi^T(k)A(k-1) \quad \text{事前誤差} \quad (7)$$

$$A(k) = A(k-1) + K(k)e(k)$$
 推定值 (8)

$$Q(k) = P(k-1) - K(k)\phi^{T}(k)P(k-1)$$
 (9)

$$\lambda(k) = rac{trQ(k)}{trP(0)}$$
 忘却ゲイン (10)

$$P(k) = \frac{Q(k)}{\lambda(k)}$$
 行列ゲイン (11)

で記述される.固定トレース法は,逐次最小二乗 法における固定忘却ゲインを,(10)(11)式を用い て可変な忘却ゲインとした逐次パラメータ推定法 であり,推定に適さない入力信号が持続している 場合に,時変忘却ゲインλ(k)を1付近に維持し,過 去情報の重みを減少しないことで,連続した変化 をしない時変パラメータの推定が可能である.(3) 式で与えられた立位モデルを固定トレースアルゴ リズムに適用するため

$$J\ddot{\theta} = \begin{bmatrix} K_P & K_D & K_P\theta_d + K_D\dot{\theta}_d \end{bmatrix} \begin{bmatrix} -\theta \\ -\dot{\theta} \\ 1 \end{bmatrix}$$
(12)

の形に変形する. (12)式と身体傾斜動作時の θ , $\dot{\theta}$, $\ddot{\theta}$ から,姿勢制御則パラメータ K_P , K_D の時間変 化を推定することで,立位姿勢制御能力の定量化 が可能であると考える. また本報告では, $\dot{\theta}_d = 0$ とし,微分制御が足関節の粘性トルクを決定して いると仮定した.

2.3 極配置を利用した安定性判別

姿勢制御系を伝達関数で表すことで、極配置を 利用した制御工学的な安定性判別が可能である。 入力を目標角度 θ_d ,出力を身体角度 θ とした姿勢制 御系の伝達関数は、初期値を $\theta_d(0) = 0$, $\theta(0) = 0$, として(3)式をLaplace変換すると

$$\frac{\Theta}{\Theta_d} = \frac{\frac{K_D}{J}s + \frac{K_P}{J}}{s^2 + \frac{K_D}{J}s + \frac{K_P}{J}}$$
(13)

$$=\frac{A\omega^2}{s^2+2\zeta\omega s+\omega^2}\tag{14}$$

$$A = \frac{K_D}{K_P}s + 1, \quad \omega = \sqrt{\frac{K_P}{J}}, \quad \zeta = \frac{K_D}{2\sqrt{JK_P}}$$

で表される.また、本報告で考える姿勢制御系の ブロック線図をFig.2に示す.この系の特性方程式

$$s^2 + 2\zeta\omega s + \omega^2 = 0 \tag{15}$$

の根sは

$$s = -\omega(\zeta \mp \sqrt{\zeta^2 - 1}) \tag{16}$$

となる、実根の値は系の収束性を表しており、極 が虚軸の左側にある場合は系の減衰を示し、右側 にある場合は発散を示すことから、複素平面上の 極配置の時間変化が姿勢制御系の安定性の時間変 化を表していると考えることができる。

3. 安定性の異なる条件での傾斜 運動実験

3.1 実験方法

実験環境をFig.3に示す. 被験者は健常男性4名 (23.8±0.8歳, 172.4±5.4[cm], 61.6±7.0[kg])であ る. 被験者身体左側の外果と頭頂に取り付けた光学 式マーカーの三次元座標を光学式モーションキャプ チャ(VICON 460, VICON MOTION SYSTEMS) を使用して120[Hz]で計測した. 被験者は股関節を 曲げずに常に足裏を接地させた状態で, 直立静止 姿勢から前方にできるだけ傾斜した後, 直立静止

Fig. 2 Block diagram of human postural control

Fig. 3 Measurement setup

姿勢に戻るという動作を,約10[s]の直立静止状態 をはさんでできるだけ素早く10回連続して行った. また,立位状態の不安定性を模擬するために以下 の3つの実験条件を設定した.

条件1 両脚·開眼:健常な状態

条件2 両脚·閉眼: 視力低下を模擬

条件3 片脚·開眼: 下肢筋力低下を模擬

条件1と条件3では、目線を目の高さに保つように 約3[m]前方に目印を設置した.全条件で股関節に 角度変化が起こらないように固定した.

3.2 解析方法

記録したマーカーの3次元座標データから,矢状 面内での身体角度変化を求め,さらに角度データ を数値微分して,角速度と角加速度を求めた.こ れらの身体運動データと(12)式から,(4)~(11)式 の固定トレースアルゴリズムを使用して制御パラ メータの時間変化を推定した.行列ゲイン対角値

Fig. 4 Tiltable step used in condition 3

γは試行錯誤的に決定した.さらに,推定した制 御パラメータを(16)式に代入して極配置の時間変 化を求めた.

実施した3つの条件間で制御則の違いを調査する ため、制御パラメータの時間変化と極配置の時間 変化で、条件間に差があると予想した値について、 母集団分布が正規性を有すると仮定して、Tukey-Kramer法⁸⁾を使用して多重比較検定を行った、有 意水準は5%とした.なお、多重比較検定にはMAT-LABのStatistics Toolboxを使用した。

4. 結果·考察

4.1 姿勢制御パラメータ推定結果と考察

Fig.5は、被験者1名の条件1,2、3で行った実験 データによって得られたθ,K_P,K_D,θ_dの平均波形 である.被験者は、時刻約3.5[s]に傾斜を開始し、 時刻5[s]で最大傾斜角に達し、その後直立姿勢に 戻っている.K_Pは傾斜運動を加速する区間で減少 し、最大傾斜直前の減速する区間で増加している. 後方への加速区間ではK_Pは若干減少し、直立静 止姿勢に戻るときに上昇し、運動後は運動前の値 よりも高い値を示している.一方K_Dは前方への 傾斜時に減少して負の値となり、最大傾斜後はほ ぼ0付近の値をとり、運動後は運動前の値よりも増

Fig. 5 Examples of temporal parameters in three experimental conditions. θ was differentiated after approximation by cubic curve using 49 data points. $\gamma = 500$.

加している. θ_dは,前方への運動時に発散し,約 4.5[s]で収束した後,最大傾斜付近で増加し,最大 傾斜角直後に減少した後,後方運動の減速時には θよりも大きい値となっている.

足部の構造上,被験者は前方への足関節トルク を自発的に発生することが困難であり,前方運動 時は身体に作用する重力を積極的に利用して身体 角度を加速していると考えられる.そのため前方 運動時の負の*K_PとK_Dは、運動が不安定になるよ* うな値であると考えられる.θ_dは、*K_Pが0近傍の* 値となった場合に発散する.最大傾斜角後に直立 静止で停止するときは,θ_dはθよりも大きくなり, かつ足関節の粘性を表す*K_Dの*値が増加している ため,なめらかに直立静止するような制御である と考えられる.運動後,運動前よりも*K_PとK_Dの*

Fig. 6 Example of each torques in three experimental conditions

値は高く,直立静止を維持するために足関節を固 める制御が表れていると考えられる.

Fig.6は上から、(2)式で与えられる全足関節ト $\nu \rho_{\tau}$, PD制御による足関節トルク $\tau + mgl_{o}\theta$, 傾 斜状態を保持するための重力に対抗する足関節ト ルク-mgl_aθの各条件の平均波形であり、正は前方 に発生する足関節トルク、負は後方のトルクであ る. rの波形は、身体角度が増すにつれて後方の 足関節トルクが発生していることを示している. τ+mgl_aθは重力によるトルク以外の,身体角度を 変化させる足関節トルクであり、-mgl_aθは重力に 対して立位を保持するために必要なトルクである. τ+mgl_gθの波形から,前方運動の加速時には前方 の足関節トルクを発生し、その後、強く後方のト ルクを発生して最大傾斜角で停止している.そし て最大傾斜後、後方運動の加速時では発生する後 方の足関節トルクはわずかに減少しており、後方 運動の減速時は直立静止するために前方のトルク を発生している.

Fig.7は,(16)式より得られた極配置の時間変化の被験者1名での各条件の平均である.○が運動

Fig. 7 Examples of pole assignment of the control system in three experimental conditions

開始前の直立静止時の極配置であり、□が最大傾 斜時である.運動開始後,虚軸の左側にあった極 実部は右側へ推移し,最大傾斜角で虚軸付近の値 となり,直立静止姿勢に戻るときに左側へ推移し ている.一方極の虚部の値は,運動開始後に実軸 へ近づいた後,徐々に実軸から離れ,最大傾斜角 後にさらに実軸から離れた後,直立静止姿勢に戻 るときは再び実軸に近づいている.

前方運動時に実部は虚軸の右側へ推移すること から,制御工学的観点から系は不安定である.こ れは被験者が前方運動を積極的に重力を利用して 加速しており,姿勢制御を行わないためであると 考えることができる.そして最大傾斜から直立へ 回復するときには,実部は主に虚軸の左側を推移 しており,直立姿勢へ戻る制御によって運動が安 定化され,系が安定となるものと考えることがで きる.また虚部の正負で極配置の形が異なること については調査中である.

4.2 特徴点の多重比較検定結果と考察

Fig.5中とFig.7中に示すように,複数被験者の各 条件間に差があると予想した値を以下のように定 義する.

- *p*₁: 運動前静止時(時刻3[s])からの*K*_Pの減少幅
- p2:前方運動時のKPの変化幅
- p3: 最大傾斜後(時刻5~6[s])のKPの変化幅
- p4: 運動後静止時(時刻6.5~7.5[s])のKPの平均値
- d₁: 運動前静止時(時刻3[s])のK_Dの値
- d2: 前方運動時のKDの変化幅
- d3: 運動後静止時(時刻6.5~7.5[s])のKDの平均値
- s1: 運動全体の極実部の変化幅
- s2: 前方運動時の極実部の変化幅
- s3:後方運動時の極実部の変化幅
- s4: 最大傾斜時の極実部の値

上記の特徴点の値について、多重比較検定を行った結果をTable.1に示す、検定の結果、

Table 1 Results of multiple comparison of candidates for quantitative evaluation of standing stability between standing condition and control parameters. (Tukey-Kramer, p < 0.05, NS: Not Significant)

		Subject number			
		A	В	С	D
K_P	p_1	NS	NS	NS	NS
	p_2	1 > 3	1 > 3	1 > 2	1 > 3
				1 > 3	
	p_3	1 > 3	NS	NS	1 > 3
	p_4	NS	NS	NS	NS
K _D	d_1	NS	NS	1 > 2	1 > 2
				1 > 3	
	d_2	1 > 2	1 > 3	1 > 2	NS
		1 > 3		1 > 3	
	d_3	1 > 2	NS	1 > 2	NS
		1 > 3		1 > 3	_
Pole	s_1	NS	1 > 3	1 > 3	NS
				2 > 3	
	s_2	NS	NS	1 > 2	NS
				1 > 3	
				2 > 3	
	s_3	NS	NS	NS	NS
	s_4	NS	1 < 3	1 < 2	NS
				1 < 3	

- *p*₂の条件1-3間
- · p3の条件1-3間
- · d₁の条件1-2間
- · d₂の条件1-2間および条件1-3間
- · d3の条件1-2間および条件1-3間
- ·s₁の条件1-3間
- ·s4の条件1-3間

について,被験者4名中2名以上で有意差が認められた.

有意差が認められた特徴点と安定性との関係に ついて考察する.視力が低下する課題を実施した 条件2において, *K*_Dでの*d*₁, *d*₃の値が条件1よりも 有意に減少しており,視覚情報の欠如により直立 静止状態で身体角速度を抑制するための足関節ト ルクが低下することを示している. これは前額面 内PIDモデルを使用したKimuraら⁹⁾によって報告 された、閉眼静止立位で微分ゲインKpが低下する 傾向を支持する結果となった。また、下肢筋力が 低下する課題を実施した条件3においても、Kpの d₃が有意に低下しており、下肢筋力の低下によっ て、直立姿勢を保つための素早い制御が困難にな ることが反映されている可能性がある。同じく条 件3において、Kpのp2の値が条件1よりも有意に 減少しており、筋力の低下によって姿勢制御のた めの足関節トルクの変化幅が低下することを示し ている.これは、筋力低下の課題を実施した場合 に,前方運動を加速する区間では安定性を失い過 ぎないように健常時よりも消極的な姿勢制御を行 い、また前方運動を減速する区間では足関節トル クを強く発生できないことを反映している.条件 3において、KPのp3が条件1よりも有意に減少し ているが、この解釈については不明である. 条件 3において、極実部のs1の有意な減少は、系の収束 ·発散の変化幅の減少を示している. これは、身体 を安定化・不安定化する能力の低下を示していると 考えることができ、被験者が能力の低下を予測し て安定性を失いすぎないように、消極的な制御を 行ったことを反映していると考えられる. 条件3に おいて、極実部のs4の有意な増加すなわち極が右 側に推移したことは、一連の傾斜運動の中で最も トルクを発生している姿勢で、筋力の低下により 系の安定性が失われたことを示している.

以上の結果から,制御パラメータの時間変化と 極配置の時間変化が,立位安定性の定量評価に利 用できる可能性が示唆された.

5. 結言

本報告では、人の立位姿勢制御が、時変パラメー タによって決定される足関節トルクによって実現さ れると仮定し、傾斜動作時の足関節制御パラメー タと制御系の極の時間変化を求めた.安定性の変 化を模擬した実験を行った結果、K_Pと極実部の時 間変化が筋力の影響を反映し、K_Dの値が視覚の 影響を反映したことから、これらの指標が立位姿 勢制御能力の定量的評価に有効である可能性が示 唆された.今後は、被験者を増やして傾向を確認 し、健常高齢者を対象とした実験を行い、理学療 法での立位姿勢制御能力評価の実用化を試みる.

謝辞 本研究実施のため,実験装置の利用にご協 力いただきました,福島大学 高橋隆行教授に深く 感謝します.

参考文献

- 1) 佐川貢一,藤澤和大,石田水里: 立位安定性と足関 節トルク制御則との関係,日本機械学会2007年度 年次大会公演論文集,7-1,45-46 (2007)
- 2)石田水里,佐川貢一:倒立振り子モデルを利用した 身体前後傾斜運動時の立位安定性の定量評価に関す る検討,日本機械学会論文集,75-752,1047-1055 (2009)
- 3) 谷口悟史,野村泰伸:バランス課題の運動学習過 程で獲得される低フィードバックゲインによる予 測的立位安定化戦略,電子情報通信学会技術研究 報告.NC,ニューロコンピューティング,105-659, 37-42 (2006)
- 4) 阿江通良,湯海鵬,横井孝志:日本人アスリートの 身体部分慣性特性の推定,バイオメカニズム,11, 23-33 (1992)
- 5) 横井孝志: 剛体リンクモデルのための身体部分剛体 特性定数, バイオメカニズム, 17-4, 241-249 (1993)
- 6) 足立修一: 制御のためのシステム同定,東京電機 大学出版局 (2002)
- 7) 新中新二: 適応アルゴリズム -離散と連続 真髄へのアプローチ-, 産業図書 (1990)
- 8) 対馬栄輝: SPSSで学ぶ医療系データ解析, 東京図 書, (2007)
- 9) Kimura Hidenori, Yifa Jiang: A PID Model of human Balance Keeping, IEEE Control System Magazine, 26-6, 18-23 (2006)