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Abstract

So far, the author developed the parametrization of all strictly causal stabilizing controllers in the framework of
the factorization approach[l]. The objective of this paper is to extend the previous results, the parametrization
of all strictly causal stabilizing controllers with some conditions. Our approach is the factorization approach,
so that the result can be applied to numerous linear system models.

1 Introduction

Since stabilizing controllers of a plant are not gener-
ally unique, the choice of the stabilizing controllers is
important for the resulting closed-loop. In the classi-
cal case, that is, in the case where the given plant
admits coprime factorizations, the stabilizing con-
trollers can be parametrized by the so-called Youla-
Kucera-parametrization (2, 3, 4, 5, 6, 7]. However, this
parametrization may include stabilizing controllers
which are not causal and, in the case of a discrete-
time system, may result in a closed-loop that does not
contain even one-step delay, which is not physically
realizable. There are models such that some stabi-
lizable plants do not admit coprime factorizations [8].
A parametrization that can be applied even to stabiliz-
able plants that do not admit doubly coprime factor-
izations is given by Quadrat in [9, 10] and the present
author in [11, 12], which may also include stabilizing
controllers that are not causal and closed-loop systems
that are causal but not strictly causal.

For some models, such as the discrete-time sys-
tem model, the closed-loop system must be strictly
causal in order to be physically realizable. Kuéera
in [13, pp.283-287] and [14, p.178] discussed the
methods to obtain strictly causal stability controllers
of discrete-time systems. In addition, Lin in [15] pre-
sented the method to obtain all strictly causal stabi-
lizing controllers of two-dimensional discrete-time sys-
tems, which can be also applied to discrete-time sys-

tems.

So far, the author developed the parametriza-
tion of all strictly causal stabilizing controllers in the
framework of the factorization approach[16, 1]. The
objective of this paper is to extend the previous re-
sults. Since the factorization approach has been used,
the result can be applied to numerous linear system
models.

2 Preliminaries

We employ the factorization approach (2, 4, 5, 6] and
the symbols used in [11, 12, 17]. The reader is re-
ferred to Appendix A of [5] for algebraic preliminaries
if necessary.

Denote by A an integral domain that is the set of
all stable causal transfer functions. The total field
of fractions of A4 is denoted by F; that is, F =
{n/d|n,d € A, d # 0}. This F is considered to
be the set of all possible transfer functions. Let Z
be a finitely generated prime ideal of A with Z # A.
Furthermore, let P = {a/b€ Fla€ A, be A— Z}
and P; = {a/be Flaec Z, be A~ Z}. A transfer
function is said to be causal (strictly causal) if and
only if it is in P (Ps)!. Analogously, a transfer ma-
trix is said to be causal (strictly causal) if and only if
every entry in the matrix is in P (Ps). Note that Z
represents the set of transfer functions that are both
strictly causal and stable.

Throughout the present paper, the plant we con-

1On the continuous-time systems, the notion of “causal” of this paper is corresponding to “proper.”



sider has m inputs and n outputs, and its transfer
matrix, which is also called a plant, is denoted by P
and belongs to P™*™. We consider the feedback sys-
tem X shown in Figure??. In the figure, C' denotes
a controller and is a transfer matrix of F™*". The
stabilization problem considered in the present paper
follows that developed in (2, 5, 6]. The reader is re-
ferred to [5, 17, 18, 19]. Let H(P, C) denote the trans-
fer matrix from [ué ub] to el eb]" of the feedback
system X, that is,

H(P.C) := (1)
(In+PC)"'  —P(I,+CP)™!
c(I,+PC)"' (I,+CP)!

c F(m+n)x (m+n)

provided that I, + PC is nonsingular. The plant P
is said to be stabilizable, P is said do be stabilized
by C, and C is said to be a stabilizing controller
of P if and only if I, + PC is nonsingular and
H(P,C) € Atmtm)x(m+n) 1f 5 causal plant is stabiliz-
able, there always exists a causal stabilizing controller
of the plant [18].

Because we investigate the set of stabilizing con-
trollers of a certain type, we introduce some notations
as follows (P € P™*™):

S(P) := {CeF™m|
H(P,C) e A(m+n)><(m+n)}
(=“the set of all stabilizing controllers
of P”),
SP(P) := S(P)NnP™*™ (=“the set of all causal
stabilizing controllers of P”),
SPs(P) := S(P)NPIM*™ (=“the set of all strictly
causal stabilizing controllers of P”),
Pr {z/lye FlzeB, ye A—- Z},
SP(P;B) S(P)nPg*",

where B is a finitely-generated ideal of A.

Finally, we introduce two symbols diag and Diag,
where diag(ay, - - -, a,) denotes the diagonal matrix for
which the diagonal entries starting in the upper left
corner are aj, ..., a,, and Diag(A;,---, A,) denotes
the block diagonal matrix with the matrices 4y, ...,
A, on the main block diagonal.

3 Parametrization of Strictly
Causal Stabilizing Controllers

In this section, we present the main results of the
present paper.

Let B denote a finitely-generated ideal of A. We
assume that B is a subset of Z. The set {(1,---,(;} de-
notes the set of generators of B such that no element

can be generated by the other elements. The set of
generators of B is not unique in general. However, in
the remainder of the present paper, we consider that
the set {¢1,---,{;} is arbitrary but fixed.

Our results are to obtain the set SP(P;B) with
one parameter. We will present two parametrizations.
The first, based on [11] and stated in Theorem 2, does
not assume the existence of the coprime factorization
for the plant. The second, based on the Youla-Kucera-
parametrization stated in Theorem 3, assumes the ex-
istence of a coprime factorization for the plant. Be-
fore stating these parametrizations, we first prepare a
result, Theorem 1, from which we obtain Theorems 2
and 3.

Theorem 1 Let P be a plant of P**™ and & =

[ C1ln I, |t € AM*". Then,
SP(P;B)={TI'®| € SP(®P)}. (2)

O

Theorem 2 Let P and ® be as in Theorem 1. As-

sume that T € P™*" js q stabilizing controller of ®P.
Let

Q(Q) = (H((I)Pv F) - Diag(lnl’ Omxm)) Q
(H,((I)P’ I') — Diag(Onixnis Im))

+H(®P,T)

where Q is a parameter matriz of AmIni)x(m+nl)
Then,

SP(P;B) = {H{ng21‘1> (3)
nl m
nl |Hy Hig
:Q 5
m [Hm HQQJ (@)

Q e A(m+nl)x(m+nl)}.

O

Theorem 3 Let P and ® be as in Theorem 1. Sup-
pose that ® P admits right- and left-coprime factoriza-
tions such that

®P =ND-! = D-IN,

YN+ XD=1,, and
NY + DX = Iy

(4)

where N, D, N, ]5, )7, )Z', Y, and X are matrices
over A of appropriate sizes. Then,

SP(P;B) = {(X — RN)"Y(Y + RD)®| R € A™*™},

(5)
O



The proof of Theorem 1 will be given later. Theo-
rems 2 and 3 are proved in the following using Theo-
rem1.

Proof of Theorem 2: Applying the parametriza-
tion of [11] to ®P, we have

nl m
_ -1 nl [Hy Hip| _
SP(@P) = {H22 Hy | lHZI sz} - Q)
QEA(m+nl)x(m+nl)}.

Applying this equation to (2), we obtain (3). Since
®P is strictly causal, the matrix Hog is always non-
singular. ]
Proof of Theorem 3: Applying the Youla-
Kuéera-parametrization to ® P, we have

SP(®P) = {(X — RN)"Y(Y + RD)| R € A™*™}.

The remaining proof is analogous to the proof of The-
orem2. [ ]

In the remainder of this section, our task is to
prove Theorem 1. Before giving the proof, we prepare
two lemmas.

Lemma 1 Let A be a matriz of P**™. Let ®giag =

diag(¢y, -+, ¢n) € A™*", where each ¢; is any one of
(1, -+, Ci. Then, A is over A if and only if PqiagA is
over A.

Proof: Denote by a;; the (i, j)-entry of the ma-
trix A. We show the “if” part only. The “only if”
part is obvious.

Suppose here that the matrix A is not over A.
Then, there exists at least one entry a;; of A with
a;j € P— A. Let ai;n and a;jq be in A and in A - Z,
respectively, such that a;; = aijn/aijq. Since ¢; is one
of (1, &, -+-, 4, we have that ¢; and a;;¢ have no
common nonunit factor of A. Thus, ¢;a;; is not in A,
which is the (i, j)-entry of the matrix ®qi,gA. Hence,
®giag A is not over A. ]

Lemma 2 Let P € F™**™ and C € F™*™. Let @gijag
and ¢; be as in Lemmal. Then, P is causal and
H(®giag P, C) is over A if and only if C is causal and
H(P,C®giag) is over A.

Proof: First we let
l:Hall Haiz

Hgoo

H,o } = H(®aingP. C),

which is equal to

“QdiagP(Im + C@d;agp)_l
(Im + C@diagp)—l

(In + (I)diagPC)~1
C(I, +(1)d1agPC)_l

and let

Hy12

Hp
Hiza

:= H(P,C®qiag),
T | H(P Oy
which is equal to

(In + PC‘Ddiag)_l
C(I’diag(-[n + PC‘I’diag)_l

—P(I, + C®yipe P)™*
(Im + Cq)diagp)_l

“Only if” part. Suppose that P is causal and
H(®4iag P, C) is over A, that is, each Hy; (1 <1,5 <
2) is over A.

Since P is causal, ®giagP is strictly causal. By
Proposition 1 of [12], we see that C is causal. We now
show that H(P, C®qiag) is over A, that is, each Hp;;
(1 <1i,j <2)is over A.

Hyoo. Since Hyoz = Hyoo, Hppe is over A.

Hpi12. The matrix —(I)diagP(Im + C@d;agp)—l, which
is equal to Hgi2, is over A. By Lemma 1, the matrix
—P(I, + C®qiag P)™! is also over A, which is equal
to Hpia.

Hypz:1. Since Hgop is over A, by Lemmal, the matrix
C(In, + @diag PC) ! ®diag is also over A, which is equal
to Hb21-

Hp1i- Recall that Hon = In — PdiagP(Im +
chdiagP)*IC and  Hpn = I, — P, +
C®iagP) "' C®diag. Since Hyy is over A, the ma-
trix Piag P(Im + C®diagP)~'C is also over A. By
applying Lemmal twice, we see that the matrix
P(Im 4+ C®diagP) " 'C®ying is over A. Hence, Hp1y
is over A.

“If” part. Since we have

H(®4i5,Ct, PY)

_ _Im Omxn . t
o {Onxm In }H(P’Cédlag)
-Im Omxn
X[Onxm I, }

this part can be proved analogously to the “only if”
part. n
Now that we have the lemmas we can prove The-
orem1.
Proof of Theorem 1: We prove this theorem by
showing two relations “2>” and “C” of (2). We denote
!

— e
by IT the matrix [Pt ) L Pt}

and by ®qiag the

diagonal matrix Diag(¢i1y,,---,(I,) € A,

D: Let I' € SP(®P). By noting that ®P = Pyj,gll
and by Lemma 2, ['®giae is in SPs(II). Let C = I'd.
This C is strictly causal. A straightforward but te-
dious computation shows that

H(P,C)




_ [ In Onxn(l—l) ] O;X’n:l (H F‘I)dlag)

mxnl
[ Tn I It
mxn

Since the right-hand side of the above equation is
over A, H(P,C) is also over A. Now the (2, 2)-block
of H(P,C) is equal to the (2, 2)-block of H(II,['®giag)-
Hence, I, + PC is nonsingular. Thus, C € SPs(P).
C: Let C € SPs(P). Then, by Theorem4.1 (p.889)
of [6]. Diag(C, P) admits both right- and left-coprime
factorizations (this holds even if P does not admit
right- and/or left-coprime factorizations). In addition,
Diag(P.C) is a stabilizing controller of Diag(C, P).
Let Py = Diag(C. P) and Cy = Diag(P,C). Further-
more let Ny, Do, }7{), and )‘{v'o be matrices over A such
that

nlxm

m

Py = NoDj', Co=X;Yo, YoNo+ XoDo = Inyn.

Since Cy Py is equal to Diag(PC, CP) and C is strictly
causal Co Py is strictly causal. Thus, all entries of
YoNo are in Z. By Lemma3.4 of [6], det(Xp) is in
A\Z.

Decompose Ny and }70 as

N, - -~
Np := {Nﬁl]’ Yo :=[Yo1 Yoo |

where Ng; € .Amx(m+") Npy € .Anx(m+n), ?()1 €
Almm)xm - and Yoo € AM+0Xn. Then, let Py =
Diag(C, II). Since [ Onxn C* ]! is strictly causal, ev-
ery entry of Y02 is in Z. Thus, there exist matrices
Yo2: (1 <1 <) over A such that Yoo = 21 1Y021Cz
Now let

Yoo=[ Yor YouGi Youl ], Coo = 550_1)700-
By letting
!
P t
Noo = |Ng; Ngz -+ Ngy

we have Py = NooDo_l and ?OONOO + X()DO = Intn.
Hence, Cyy is a stabilizing controller of Pyg.
Now let

FO = [Omxn Im]COO [Onlxm I'n.l ]t
and
V= Onlxm Inl Onlxn Onlxm
Omxm Omxnl Omxn Im

Since det()?o) is in A\ Z, 'y is strictly causal. Then,
a straightforward but tedious computation shows that

H(I1,Ty) = VH(Poo,Coo)V?. On the other hand, the
(2,2)-block of H(II,Ty) is equal to (I,, + CP)~!
Here I, + CP is nonsingular. Thus, Ty is a sta-
bilizing controller of II. Decompose T'g as Ty =
[Tor -+ Tor ] with T'g; € P™*™. One more straight-
forward but tedious computation shows that C is
equal to Zézl [oi. On the other hand, we can factor-
ize I'g as [y = I'®qjag, where the matrix I is equal to

[Omxn Im] )"('»0—1 [}7021 }7021], which is causal.
Hence, C =T'®. By Lemma2, I' € SP(®giagll). Since
Qiagll = ®P, we have I' € SP(®P). (]
4 Example

Let us consider the classical continuous-time systems.
The set A of stable proper transfer functions is given
by

A={f(s) €R(s)| sup [f(s)| < oo}.

SEC+e
It is known that this A is a Euclidean domain with
the degree function ¢ : (A — {0}) — Z4:

5(f) = “number of zeros of f in Cy”

The ideal Z for the definition of the properity is given
as
Z={fe Al f=n/d, n,deR[s],
deg(n) < deg(d)},
which is a prime and principal ideal.

Now let
P=s/(s—1) e P>

Consider to obtain the set of all stabilizing controllers
of this P with relative degree more than 1. First con-
sider

2= () and B=(1/(s+17) (G = 1/(s+1)7).

Thus, let
®=[1/(s+1)?].

Then we have
PO = [5/((s — 1)(s + 1)

We also have

ny + dxr = u,
where
P® = [n/d],
__S _s-1
T (s+1)3 7 s+1]
_ 12 _+3557+85-05
Ve T (s+1)3 ’

258435 +6s+1
2(s+1)3




Then u is a unit of A because the zeros of u are

—0.66 £1.53; and — 0.18.
Now SP(P;B) can be obtained by virtue of The-

orem 3. For example, letting
R=[7/(s+2)],
we obtain the following stabilizing controller:

2(17 +19s)
254 + 1183 +30s2 + 175 — 2°
This relative degree is 3.

5 Conclusion

In the present paper, we have presented the
parametrization SP(P; B) of all causal stabilizing con-
trollers with some conditions with B C Z beging a
finitely-generated ideal of A. The results of the pre-
sented paper make no assumption of coprime factoriz-
ability in principle. Since the factorization approach
has been used, the result can be applied to numerous
linear system models.
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