
Presentation date: March, 12, 2010 Paper number: 256-2

GPU implementation of ESM tracking
⃝ Chuantao Zang Yoshihide Endo Koichi Hashimoto

Graduate School of Information Sciences, Tohoku University
{chuantao, endo, koichi}@ic.is.tohoku.ac.jp

Abstract— This paper describes our novel work of using graphic processing unit (GPU) on
visual tracking. In this paper, we present our novel implementations of GPU based Efficient
Second-order Minimization (GPU-ESM) algorithm. By utilizing the tremendous parallel
processing capability of modern graphic hardware, we obtain significant processing acceleration
from GPU over its CPU counterpart. Currently our GPU-ESM algorithm can process tracking
area of 360×360 pixels at 145 fps on NVIDIA GTX295 board and Intel Core i7 920, which is
approximately 30 times faster than CPU implementation. This speedup substantially improves
the realtime performance of our system. In this paper, translation details of ESM algorithm
from CPU to GPU implementation and novel optimizations are presented. The effectiveness of
our GPU-ESM tracking algorithm is validated with experimental data.

Key Words: ESM method, GPU, optimization.

I. INTRODUCTION

Visual tracking consists in the problem of es-
timating the incremental transformations which
align a reference image with successive frames
of a video sequence. As a fundamental task to
many applications, general solutions can be classi-
fied into feature-based and direct (intensity-based)
methods [1]. Among various visual tracking sys-
tems, one category has been designed to exploit
the Cartesian information from the homography
between two images of a planar object.

Usually homography solution is a typical min-
imization problem of sum of squared differences
(SSD) between a region in reference image and a
warped region in current image [2]. Many nonlin-
ear optimization approaches have been proposed
to deal with this least square optimization problem
with different kinds of approximations, such as
Standard Newton method, Gauss-Newton approx-
imation [3]. Among these solutions, the efficient
second-order minimization (ESM) algorithm is an
elegant idea which obtains the same convergence
speed as standard Newton method without com-
puting the computational costly Hessian matrix
[4]. By performing second order approximation of
the SSD problem with only first order derivative,
this method can get high convergence rate and
avoid local minima close to the right global one.

However, when considering realtime visual
tracking system, the main requirements of the
tracking algorithms are efficiency, accuracy and
stability. In Malis’s paper [2], only the stabil-
ity and convergence rate of ESM algorithm are
evaluated with experiments. As far as we know,

no data of processing speed is mentioned. From
our experience, with the increase of tracking area
size, for example, size of 300× 300 pixels, the
ESM computation still costs too much time and
induces a relative low processing speed. To solve
these problems and improve the performance of
homography-based visual tracking system, We
present GPU based ESM tracking algorithm (we
call it GPU-ESM) to address the need for faster
visual tracking algorithms. After several novel op-
timizations on GPU code, we succeed in achieving
substantial acceleration over CPU ESM imple-
mentation. For tracking area of 360×360 pixels,
our GPU-ESM can work at 145 fps, approximately
30X faster than CPU. This allows for a realtime
visual tracking system with a higher speed camera.
The rest of this paper is organized as follows.
Section II reviews the relative works about ESM
algorithm. Section III introduces the translation
details of GPU-ESM so as to fully utilize the
parallel architecture of GPU. Section IV describes
the experimental results to validate our proposed
system. Section V concludes this paper.

II. RELATED WORKS

ESM algorithm was first proposed by Dr. Malis
in 2004 [5]. By performing second order approx-
imation of the least square problem with only
first order derivative, it shows great application
potential in visual tracking. It has been reported
in many different kinds of applications, such as
visual tracking of planar object [2] and deformable
object [6]. To our knowledge, there is no reports
of GPU based ESM yet. For simplicity, we review



the main idea of homography-based visual control
scheme with ESM algorithm [2].

First we suppose the planar object to track is
projected in the reference image I∗ with some
“Template” region of q pixels. Tracking the ref-
erence template in the current image I consists
in finding the homography transformation G that
transforms each pixel P∗

i of the reference pattern
into its corresponding pixel in the current image
I, i.e. finding the homography G such that ∀i ∈
{1,2, ...q}:

I(w(G)(P∗
i )) = I∗(P∗

i ) (1)

Suppose that we have an approximation Ĝ of G
, the problem consists in finding an incremental
transformation G(x) (where the 8 × 1 vector x
contains a local parameterization such that the
difference between the region of the image I
(transformed with the composition w(Ĝ)◦w(G(x))
and the corresponding region in the image I∗ is
null. Tracking consists in finding the vector x such
that ∀i ∈ {1,2, ...q}, the image difference

yi(x) = I(w(Ĝ)◦w(G(x))(P∗
i ))− I∗(P∗

i ) = 0 (2)

Let y(x) be the q × 1 vector containing the
image differences:

y(x) = [y1(x),y2(x), ...yq(x)]T (3)

Therefore, the problem consists in finding x =
x0 verifying:

y(x0) = 0 (4)

We linearize the vector y(x) around x = 0 using
the second-order Taylor series approximation:

y(x) = y(0)+J(0)x+
1
2

xT H(0)x+O(∥x∥3) (5)

where J(0) and H(0) are the Jacobian matrix
and Hessian matrix at x = 0, seperately. In ESM
algorithm, the Hessian matrices of vector y(x) are
replaced by first-order Taylor Series approxima-
tion of vector J(x) about x = 0:

J(x) = J(0)+xT H(0)+O(∥x∥2) (6)

Then equation (5) becomes

y(x)≈ y(0)+
1
2
(J(0)+J(x))x (7)

For x = x0, we have

y(x0) = y(0)+
1
2
(J(0)+J(x0))x0 = 0 (8)

With some mathematical proof by Dr. Malis [2],
the sum of Jacobian matrix 1

2(J(0)+J(x0)) can be
written as one matrix Jesm. Therefore, for x = x0,
we have

y(x0) = y(0)+Jesmx0 = 0 (9)

The solution x0 can be obtained by:

x0 = J+esmy(0) (10)

The homography G can be calculated with this
x0 with Lie Algebra operation. By obtaining this
homography G, visual tracking is accomlished.

III. SYSTEM IMPLEMENTATION

Our GPU implementations of ESM algorithms
are carried out on a desktop with Intel Core i7-
920 2.67GHz CPU, 3GB RAM and a NVIDIA
GTX295 graphic board. The GTX295 board inte-
grates two GTX280 GPUs inside and has 896MB
GPU RAM for each GTX280 GPU. The interface
between motherboard and GTX295 board is PCI-
E x16 bus. Operating system is Windows XP (sp2)
with NVIDIA’s CUDA (Compute Capability 1.3).

For our GPU-ESM algorithm, we categorize our
CUDA kernels in 6 categories.

1). Warping. This kernel completes the task that
warping pattern image to current image with a
known homography.

2) Gradient. This kernel calculates the image
intensity gradient in X and Y directions.

3) Jesm. This kernel calculates the Jesm matrix
in ESM algorithm.

4) Solving. This kernel finds solution X of linear
equations

JesmX = y(0) (11)

5) Updating. This kernel updates homography
with solution X from Solving kernel.

6) Correlation. This kernel calculates the cor-
relation of warped area and pattern image to
decide when to stop the ESM processing. As ESM
algorithm is iterative minimization method, we
have to set such threshold to stop the loop.

IV. OPTIMIZATION AND EXPERIMENTS

In this section, we share our optimization
experience during our GPU-ESM implementa-
tion. Then we evaluate the whole performance
of our GPU-ESM algorithm with experimental
data.Though CUDA uses C language with several
extensions which makes it easier than other GPU
languages for programmer to write GPU code, to



make GPU code highly proficient, carefully opti-
mization must be exploited and several important
factors must be considered.

A. Memory optimization

Memory optimization mainly consists in using
different kinds of GPU memory to accelerate
the application. CUDA provides a hierarchy of
memory resources. Among them, commonly used
are register, shared memory, global memory and
texture memory.

In our GPU-ESM, we intensively utilize the
fast shared memory instead of the long-latency
global memory. In kenel Jesm, the compute of Jesm
matrix needs several intermediate results based on
the image gradient. So we first load the image
gradient data into shared memory of each block
and then continue other computation on them. By
using this “cache” like strategy, we reduce this
kernel’s processing time from 300us to 50us.

We also use texture memory in kernel “warp-
ing” because CUDA provides such bilinear filter
function. We only need to set the filter mode to
bilinear. When fetching the texture memory, the
returned value is computed automatically based on
the input coordinates. Though the running time is
similar to our own kernel but with it we can skip
its programming.

B. Memory coalescing

By memory coalescing a half warp of 16 GPU
threads can finish 16 global data fetching in as
few as 1 or 2 transactions. In our application, we
also intensively use this technique. For example,
to calculate the mean I in ZNCC correlation, first
we need to calculate the sum of I. We use 1 block
of 512 threads to accumulate all the 90000 pixels.
The number of data processed in each block is at
least 90000/512 ≈ 175. The normal idea is using
“for-loop” in each thread like this:

f or(k = threadeID;k < threadeID+175;k++)

sum+= I[k];

To use memory coalescing, we change the code
to follows:

f or(k = threadeID;k < 90000;k+= 512)

sum+= I[k];

Though both “for-loops” have same perfor-
mance for a CPU thread, speedup really happens
on GPU. GPU memory is accessed in a specific
block mode, i.e. each GPU memory access will

load data from a block of continuously addressing
memory space. For example, it can load I[0] ∼
I[15] simultaneously by 16 GPU threads. In lat-
ter method, the loaded 16 data can be parallel
processed by 16 GPU threads. Meanwhile, in
former method, only one data is used in one thread
while all other data is deserted. For each of other
threads, they must invoke their own GPU memory
access to fetch the one they need. Therefore using
memory coalescing strategy, we can substantially
reduce the total number of memory access. As
GPU memory access belongs to the long-latency
global memory access (several hundred GPU cy-
cles), reducing global memory access provides us
with great performance gain.

C. Experiments

With above optimizations, finally we realize our
GPU-ESM and conduct experiments to compare
with CPU-ESM on the same desktop. Processing
frame rates are shown in Table I and Fig. 1.

TABLE I
GPU FPS AND CPU FPS

Size M CPU fps GPU fps
32×32 1024 703 306
40×40 1600 479 304
64×64 4096 187 301
96×96 9216 86 287

128×128 16384 48 271
160×160 25600 32 254
192×192 36864 22 234
224×224 50176 16 215
256×256 65536 11 195
300×300 90000 8.2 172
360×360 129600 4.8 145

0 2 4 6 8 10 12 14x 10405
1015
2025
3035

 

 GPU/CPU Ratio

Fig. 1. GPU/GPU Ratio repecting to M

The data shows that using GPU can greatly
accelerate the ESM algorithm. Meanwhile, as the
GPU/CPU Ratio increases with the tracking area
size M, it also shows that GPU is more preferable
for highly parallel processing. For those algo-
rithms which can not be parallelized, using GPU



t=0s t=2s t=4s t=6s t=8s

Fig. 2. ESM tracking results on CPU.

t=0s t=2s t=4s t=6s t=8s

Fig. 3. ESM tracking results on GPU

might induce an even low speed. Besides, Images
were extracted from the CPU and GPU ESM
tracking sequences and shown seperately in Fig. 2
and Fig. 3. Tracking area is a 200×200 window
shown in t = 0s. The windows in the first row of
Fig. 2 and Fig. 3 are warped back and shown in
the second row. Despite illumination changes and
image noise, the warped windows should be very
close to the reference template when the tracking
is accurately performed. During the experiments,
we increase the object’s moving speed slowly.
From the sequences we can see CPU performance
becomes poor (for t = 8s the warped area is totally
different from the template ) when moving is fast
while GPU can still performs visual tracking well.

V. CONCLUSIONS

In this paper, CUDA implementations of GPU-
ESM is presented in a homography-based visual
servo system. By utilizing optimization techniques
including memory optimization and memory co-
alescing, GPU-ESM provides us a better system
performance with higher processing speed and
reliability. Experimental results validate the effi-
ciency and effectiveness of our CUDA applica-
tions. By investigating the optimization techniques
adopted in our implementation in detail, this study
also makes contribution to the general purpose
GPU computation community.

REFERENCES

[1] R. Szeliski, Handbook of Mathematical Models in Com-
puter Vision, pp 273-292. Springer, 2006.

[2] S. Benhimane and E. Malis, “Homography-based 2D
visual tracking and servoing”, International Journal of
Robotic Research, 26(7): 661.676, 2007.

[3] Shum, H. Y. and Szeliski, R,“Construction of panoramic
image mosaics with global and local alignment”, Inter-
national Journal of Computer Vision, 16(1): 6384.

[4] S. Benhimane, E. Malis,“Real-time image-based track-
ing of planes using efficient second-order minimiza-
tion”, IEEE/RSJ International Conference on Intelligent
Robots Systems, Sendai, Japan, 2004.

[5] E. Malis, “Improving vision-based control using effi-
cient second-order minimization techniques IEEE In-
ternational Conference on Robotics and Automation”,
New Orleans, USA, April 2004.

[6] E. Malis, “An efficient unified approach to direct visual
tracking of rigid and deformable surfaces”, IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, San Diego, USA, October 2007.

[7] E. Malis, “Improving vision-based control using ef-
ficient second-order minimization techniques”, IEEE
International Conference on Robotics and Automation,
New Orleans, USA, April 2004.


