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In this paper, to increase success rate of single paramecium tracking further, we combine condensa-
tion filter with region-based level set method model. For the condensation filter, a system dynamical
model is built up to estimate the location of target paramecium on image coordinate system. And
also an observation model based on location and intensity summation of target is created to update
particle weights. Experiments confirmed that with the motion prediction from condensation, we

extend the single paramecium tracking duration and increase the success rate of tracking.
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1 INTRODUCTION

Failure rates of single paramecium tracking is still
52% after displacement correction [1]. These re-
sults are not good enough for biologist applica-
tion. So far, we have increased robustness of single
paramecium tracking by decrease boundary detec-
tion error after error happened. Therefore, we try to
use some prediction technique to increase our Suc-
cess rates. Therefore, we try to combine particle
filter with our previous work to increase robustness
of single paramecium tracking during collision.

Since in our tracking system, disturbances such
as measurement errors from camera, measurement
error from servo motor of stage and control preci-
sion of servo motor, it is hard for us to describe
our system as a linear model, we therefore choose
particle filter as our basic framework. Condensa-
tion filter is used in this chapter to calculate the
target centroid based on estimated location using
dynamic model and measurements from PR-LSM.
The proposed model is implemented in worksta-
tion (a nonparallel high speed computer). The ex-
periment results indicate that condensation filter is
helpful for the collision problem and raise success
rate of tracking and prolong the maximum tracking
duration.

2 TRACKING BASED ON PF

Object tracking based on PF is described as the
problem of estimating the state vector x; of a sys-

tem at time k (discrete) while a set of observa-
tions z; is available over time. Ultimately it is re-
quired to estimate recursively in time some func-
tion f(x,) of the object state which is the loca-
tion of the object in our tracking problem. Particle
filter represents the required posterior probability
density function (PDF) as a set of random samples
with associated weights and to compute estimates
based on these samples and weights. The Conden-
sation algorithm, one of the most common parti-
cle filter, 1s based on factored sampling which has
been introduced for non-Gaussian, nonlinear con-
tour tracking problems [2, 3, 4]. Given that the
process at each time-step is a self-contained iter-
ation of factored sampling, the output of an itera-
tion will be a weighted, time-stamped sample set,
denoted {x},i=1,---,N} with weights wi, repre-
senting approximately the conditional state-density
p(Xk|zy) at time k.

3 TRACKING BASED ON CON-
DENSATION

3.1 Motion of Paramecium

In order to predict the probability distribution of
the pose of the moving paramecium after a motion
we propose a motion model which describes trans-
lation and rotation information of target cell. The
motion of a cell from time & to £+ 1 is shown in
Fig. 3.1. The simplest approximation of the mov-
ing process is to model this motion as a translation



along its own axis followed by a rotation. The ori-
entation of the cell at the beginning (location A in
Fig. 3.1) would be 6(k) and the orientation at the
end (location Bin Fig. 3.1)is 6(k+1) = 0 (k) + &g,
where &g represents the amount of the rotations that
occur after the translation modeling by the effect of
noise [5, 6, 7]. The translation Ap (k) from time k
to k+ 1 is modeled by the translation from time k
to k— 1 plus unpredictable noise. Then the parame-
cium motion model can be represented as eq. 1.

x(k+ 1) =x(k) +Ap (k)eos(8 (k) + & (k)
y(k+1) =y(k) +Ap (k)sin(6 (k) + &, (k)
O(k+1) =0(k) + &

8p(k) =7/ (x(k) = x(k— 1)) + (s(k) —y(k— 1),

(1

€g indicates rotation angle and & and g, indicates
unpredictable velocity change.

3.2 System Dynamical Model

In single paramecium tracking system we are in-
terested in localizing target to keep target in the
center of visual field under microscope by mov-
ing stage in opposite direction. The stage moves
within control table by controlling motor. A co-
ordinate system for stage moving on control table
1s defined and the location of stage in stage coor-
dinate system is represented as (x;,ys). The slide
glass is fixed on the stage and moving with the
stage together. Paramecium is swimming within
slide glass. A coordinate system for paramecium
moving on slide glass is defined and the location of
paramecium in slide glass coordinate system is rep-
resented as (x,.yp). The motion of stage on control
table combining with the motion of paramecium on
slide glass results in the motion of paramecium in
the image that is captured by the camera mounted
on microscope. A coordinate system for parame-
ctum moving on the image is defined and the loca-
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Figure 1: Schematic diagram of dynamic for single
paramecium tracking.
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Figure 2: Schematic diagram of paramecium mo-
tion with translation and rotation information.

tion of paramecium in image coordinate system is
represented as (x;,y;).

As we can see in Fig. 1, input for tracking sys-
tem is the differences between reference location
(xy,yr) and paramecium location on image (x;,y;).
(xr,yr) is the desired location where the target is
kept. The paramecium location on image (x;,y;)
can be measured from our boundary detection al-
gorithm which is the consequences of paramecium
moving on the slide glass and stage moving on the
control table. The state vector for tracking system
at time step k is defined as containing the location
of paramecium on slide glass at time step k+ 1 and
location of stage on control table at time step & + 1
and it is therefore written as

xp =(p(k+1),yp(k+1),0(k+ 1), x,(k+1).
yolk+1))". )

The output vector is defined as

yi = (xi(k).yi (k)T 3)

System dynamic models are built as non-linear
in the state dynamics with non-linear disturbances:

X1 =F(xx) + By 4 vy
i =g(Xk) + Vi
ue =K (r —yx) 4

Here x; is the state vector. f and g are functions for
states and measurements. uy is measured inputs.
Ui is the noise model representing unpredictable
change of paramecium translation. y; is the mea-
surements and v; is the measurements noises. The



resulting system model is
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where k. and k, are gain parameters for propor-
tional control.

3.3 Observation Model

We uses detected contour from PR-LSM-DC as the
measurement cue. Based on detected contour, we
can calculate the centroid of current detected objec.
Location observation model of target on image is
proposed as

P(YklRy) o< . xp( 202
ilk) —3i(k))?
* 202 )
1 6;(k) — 6;(k))?
o ( (6i( )203( ) )
where  (xi(k),yi(k)),6;(k) is the pose of

paramecium measured by using PR-LSM-
DC. (xi(k).pi(k),6;(k)) is the pose of paramecium

estimated using system dynamical model. o, =1
is the variance keeping all the particles within a
circle (center is (x(k),);(k)), radius is 1) and o
the variance keeping all the the rotation angle for
each particles not much different from measured
one. Then particle weights can be updated based
on this likelihood as:

(10)

Wi = p(yilRe).
3.4 Tracking Based on Condensation

Our proposed method works iteratively as follows:

1. Prepare the image /(x,y) of the tracked object
(image size is s X 5.) and initialize the particle-

set {x),wi},i=1,--- N where
wh = : (11)
LY
) x,(0) i
.Vp(o) %i
xp=| 6(0) | = | ¥ (12)
x5(0) Xp
ys(o) Xp

2. By using system dynamic models above, we
predict the location of target paramecium on
image coordinate system (%;(k),pi(k)), 6;(k)
at the next time-step which helps correct
boundary detection error due to the collision.

ik+] —f(i ) +Byu; + 'Uk
Vi =g(Xe) + Vi (13)
We assume Xy known and Ap (k) inside func-
tion f is fixed as certain value for present-
ing paramecium velocity. In 0, we as-
sume noise & and g, to be uniformly dis-
tributed randoms indicating unpredictable ve-
locity change within [-0.1, 0.1] micrometer.
€g is assumed to be randoms drawn from
uniform distribution indicating rotation angle
within [-0.5, 0.5] degree. vy is the measure-
ments noise which is drawn from uniformly
distributed randoms within [-1, 1] pixel.

3. Using PR-LSM-DC model, detected contour
is obtained. When collision happens, we do
not just translate previous ¢ (k— m) according
to displacement, we also rotate previous ¢ ac-
cording to (k) — 6(k—m). Based on the ¢



of corrected contour, the particle weights are
updated using observation model (9) as:

Wi = p(yel&e).
where 6. =1, 69 = 0.5.

4. Once the N particle set have been estimated,
the location of single target paramecium at
time-step k is calculated as:

=

E[f(x0)] = X, Wik (14)

1

I

5. Calculate the normalized particle weights Wi,
and cumulative probability ci. Check out if
resampling is necessary.

6. k=k+1, gotostep2.

4 EXPERIMENTS

4.1 Successfully tracking during Collision

To confirm the ability of our proposed model, we
conduct experiments of tracking the single parame-
cium with condensation in a non-parallel worksta-
tion. We check whether our proposed method track
only target paramecium even when the tracked
paramecium collides with other obstacles. Fig. 4.1
is consecutive image sequences from the tracking
movies. The center of target paramecium is cal-
culated by using condensation filter with PR-LSM-
DC as measurements shown as red dot in Fig. 4.1.

Fig. 4.1 is the result of tracking the single
paramecium near a air bubble. From 371 [ms] to
377 [ms], the target paramecium swims close to
the air bubble. During 379 [ms] to 387 [ms], the
tracked paramecium collides with the air bubble.
After 387 [ms], this paramecium swims away from
the air bubble. During the whole process of col-
lision, the target paramecium is in the center of
the image all the time, indicating that the single
paramecium tracking is successfully using conden-
sation filter.

4.2 Success and Failure Reasons

To clarify how our proposed collision handling im-
proves the tracking success rate, we compare suc-
cess and failure rates of tracking with condensation
filter to the ones without condensation filter (Table
1). 50 trails of real-time tracking are conducted

for two situations. We define successful tracking
and failure tracking as the duration of paramecium
staying in the image is over 60 s or not, respec-
tively. The success rate of tracking increases from
48% to 66% due to the condensation.

The reasons of failure tracking are listed as in
Tab. 1. For reason (1), the failure rate is im-
proved significantly by using condensation. sug-
gesting that condensation improves the robustness
of the single paramecium tracking among a few ob-
stacles. For reason (2), the failure rate with and
without condensation are nearly equal, that indicat-
ing condensation filter can not solve the problem
with large population of cells.

S CONCLUSION AND DISCUS-
SION

To increase success rate of single paramecium
tracking further, we combine condensation filter
with PR-LSM-DC model. For the condensation fil-
ter, a system dynamical model is built up to es-
timate the location of target paramecium on im-
age coordinate system. And also an observation
model based on location and intensity summation
of target calculated from PR-LSM-DC model is
created to update particle weights. Experiments
confirmed that with the motion prediction from
condensation, this proposed method also increases
maximum tracking durations, average tracking du-
rations, and the success rate of single cell tracking
among other obstacles. However, still cannot solve
the tracking problem when target among large cell
population.

References

[1] Koichi Hashimoto Xianfeng Fei, Ya-
sunobu Igarashi. Parallel region-based
level set method with displacement correction
for tracking a single moving object. In
Advanced Concepts for Intelligent Vision
Systems, Bordeaux, France, 27-34, 2009.

[2] U. Grenander, Y. Chow, and D.M. Keenan.
Hands: A Pattern Theoretic Study of Biologi-
cal Shapes. Research notes in Neural Comput-
ing. Springer Verlag, New York, 1991.

[3] M. Isard and A. Blake. Contour tracking
by stochastic propagation of conditional den-



371 [ms] 374 377
B i 2
384 [ms] 387 390

379

380

.

.

Figure 3: Locations of target paramecium detected using condensation with PR-LSM-DC in nonparallel
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