計測自動制御学会東北支部 第256回研究集会 (2010.3.12) 資料番号 256-8

アドホック視覚センサネットワークにおける 視野接続推定

Vision Graph Estimation for an Ad hoc Vision Sensor Network

近藤真,鏡慎吾,橋本浩一

Shin Kondo, Shingo Kagami, Koichi Hashimoto

東北大学大学院情報科学研究科システム情報科学専攻

Department of System Information Sciences, Graduate School of Information Sciences, Tohoku University

- キーワード: アドホックネットワーク(ad-hoc network), 視野接続(vision graph, vision topology), SIFT(Scale Invariant Feature Transform),
 - 連絡先: 〒980-8579 仙台市青葉区荒巻字青葉6-6-01 東北大学 情報科学研究科 橋本・鏡研究室 近藤真, TEL 022-795-7021, FAX 022-795-7019, E-mail: kondo@ic.is.tohoku.ac.jp

1. 緒言

無作為に配置されたセンサが自律的にネッ トワークを構築するアドホックセンサネット ワークの研究は,これから到来するユビキタ ス社会において重要なテーマである.

一方でカメラを用いたセンサネットワーク の分野では,複数のカメラをネットワークで 結び協調動作させる研究が盛んに行われてい る¹⁾,²⁾.ただし,カメラネットワークは静的 に構成されていることが多く,アドホックネッ トワークを想定していることは少ない.

またカメラの分野では近年集積回路技術の 向上によりカメラの小型化,低コスト化,低電 力化がますます進んでおり,従来では考えら れなかった応用が実現可能になってきている, カプセル型の胃カメラなどの極小の無線カメ ラの開発が進んでおり,極小カメラを大量に バラまくように配置させるアドホックな視覚 センサネットワークの実現も現実味を帯びて きている.人の立ち入りが困難な災害現場で カメラを散布し負傷者を見つけるなど,視覚 センサの新たな応用が期待されている.

このようなアドホックな視覚センサネット ワークを構築するには従来のアドホックネッ トワークとは別の難しさがある.通常のアド ホックセンサネットワークでは,図1の(a)のよ うに物理的に隣接したセンサ同士が互いに接 続されていく.しかし,視覚センサの場合は, センサ同士が物理的に隣接していても共通の 事象を見ているとは限らない.2つのセンサが 共通の事象を観測しているかどうかという図 1の(b)のような視野接続関係を推定する必要 がある.

Fig. 1 視野接続関係と物理的接続関係

視野接続関係に着目した研究は従来から行われているが,その多くでは接続関係を手動で,あるいは何らかの便宜的な事前知識の基づいて行っていた³⁾,⁴⁾.一方いくつかの最近の研究では,画像内の動き情報に基づいて視野接続推定⁵⁾や,画像間の特徴点の対応づけに基づいて推定⁶⁾も行われている.本論文では,Cheng ら⁶⁾と同様に特徴点の対応づけに基づく視野接続推定を提案する.

2. 視野接続の推定

2.1 視野接続推定の原理

視野接続推定を行うためには2つの画像間で 共通の事象を観測しているかどうかを調べる 必要がある.本論文ではその推定方法として, Chengら⁶⁾同様にSIFT (Scale Invariant Feature Transform)を用いる.SIFT⁷⁾は画像中か ら特徴点を見つけ,その点を表現する特徴量 を画像の回転やスケール倍にロバストな形で 得ることができるものであり,画像認識等で 広く用いられている.SIFTにより得られる特 徴量は標準的には128次元のベクトルであり, 特徴点の対応づけはその128次元空間中での ユークリッド距離が近い特徴点を探すことで 行われる.ただし,SIFTでは誤った対応点も 検出されるので,本論文では,画像間で一定 数以上の対応点が検出されたら視野が接続し ていると判断する.

2.2 視野接続推定の分散化

多数のカメラノードの相互間の視野接続を 推定する場合は,全カメラノード対全カメラ ノードについて特徴点の対応づけを行う必要 がある.それを行う一つの方法として,すべ てのカメラが持つデータを一つのノードに集 め,そのノードですべての対応づけを計算す る方法が考えられる.しかし,そのノードの 周囲のリンクに負荷が集中してしまうことや, そのノードが機能しないと対応づけができな いことなどの問題があり,一般にセンサネッ トワークには適さない.

また別の方法としては,各カメラノードの データを他のカメラノードすべてに送信(ブ ロードキャスト)した上で,各カメラノードに おける視野接続先はそのカメラノード自身に 計算させるという方法が考えられる.しかし この方法では,同じデータをカメラノード数 の数だけ重複して送るので無駄が生じ,ネッ トワーク全体のデータ通信の負荷が大きくな る問題がある.その解決策としてChengら⁶⁾ は,データをブロードキャストするが,特徴 点数の削減,特徴量次元の圧縮によりデータ 通信量を削減することでネットワーク全体の 負荷を低減している.しかし,重複による無 駄が生じる点には変わりがない.

3. 提案手法

3.1 基本方針

既に述べたように,SIFT 特徴点の対応づけ は,その特徴量間のユークリッド距離が近いも のを探索することによって行われる.よって, 対応づけられる特徴点対は,特徴量空間内で 互いに近くに位置していると考えられる.こ の考察から,特徴量空間を適当に分割してお

Fig. 2 提案手法の概要

き,探索処理はその分割された領域内のみに 対して,その領域を担当するノードに実行さ せるという考えが導かれる.従来はあるノード で検出された特徴点情報を他のすべてのノー ドにブロードキャストしていたところを,そ の特徴量が含まれる分割領域を担当するノー ドに送るだけですむようになるため,ネット ワークの負荷を低減できると期待できる.ま た,対応づけ計算の負荷分散も期待できる.こ の考え方を図2に示す.

ここで考えている対応点探索の分散化の考 え方は, Peer-to-Peer (P2P) ネットワークにお ける資源探索の分散化⁸⁾と類似している.例え ば P2P ネットワークによるファイル共有アプ リケーションでは,多数のネットワークノード の中から目的のファイルを保有するものを高 速に見つけ出す手段が必要である.これを効 率よく分散化して行う方法として分散ハッシュ テーブルと呼ばれる技術が用いられる.分散 ハッシュテーブルでは,ファイルの内容をハッ シュ関数により数値化し,その数値とノード を対応づけることで,そのファイルの管理情 報を持つノードを決定する.センサネットワー クの分野では,センサデータの種類等を表す メタ情報をハッシュ化することでデータの保 存先を決定するデータセントリックストレー

ジ⁹⁾等への応用が知られている.

これらと我々の問題の間の大きな違いは,我々 は画像特徴量というセンサ情報を,ノード決 定のためのキーとして直接用いようとする点 にあり,従って完全一致による探索ではなく近 傍探索が目的になる点にある.そのため,探 索空間を複数の領域に分割することで,本来 見つかるべき対応点が見つからなくなる恐れ がある.

一般に,探索空間の分割を細かくすれば負 荷分散の効果は上がるが探索ミスの可能性は 大きくなると考えられる.ミスを低減するた めには,ある程度は領域分割境界をまたいだ 探索も行わなくてはならない.そのために必 要なオーバヘッドをできるだけ減らすために は,特徴量空間内で近くに位置する分割領域 どうしについては,それらの領域を担当する ノードもネットワーク上で近くにあることが 望ましい.

以上の考察から,本論文では,特徴量空間 の分割構造がネットワークノードの接続構造 と同相に近くなるような手法を検討する.多 くのセンサネットワークが2次元上に配置さ れるとみなせることを考慮して,SIFT 特徴量 空間のある2次元の部分空間を考え,その部 分空間内で分割を行う.

3.2 分割方法

分割領域をまたいだ探索の手法を提案し,評価を行う.

特徴量空間の分割領域は各ノードはあらか じめ知らないものとする.互いのノードの物 理的位置は例えばGPSなどで各ノードは取得 しているものとする.各ノードに,特徴量空 間の2次元部分空間内の1点の座標を割り当 てる.このとき,ネットワーク上で近くにあ

Fig. 3 特徴量空間がボロノイ型に分割され た結果(ノード64)

るノードには,互いに近い座標が割り当てら れるようにする.本論文では,特徴量は600× 600の2次元部分空間の座標に射影されるので, 各ノードの物理座標を相似変換させて,2次 元部分空間内の1点の座標を割り当てる.

各ノードは画像から特徴点を得て,その特徴 量を2次元部分空間に射影したものを計算し, 宛先座標とする.その特徴量データを,宛先座 標に最も近い座標を持つノードが目標ノード となるように送信する.具体的な経路制御方 法としては geographic routing ¹⁰⁾ などを用い ることができる.本論文では簡単に送信ノー ドがリンクしているノードの中で目標ノード の座標にもっとも近い座標のノードに特徴量 を送信する手法をとる.

仮にすべての特徴量データが,宛先座標に 最も近い座標を持つノードまで到達したとす ると,以上の方法は,各ノードに割り当てら れた座標を母点として,特徴量部分空間をボ ロノイ分割することに相当する.実際に64分 割された結果を図3に示す.点の色の違いは送 信されたノードの違いである.結果的にボロ ノイ図状に自動的に分割される.

3.3 分割領域をまたいだ探索

次に,分割領域をまたいだ探索の手法につ いて説明する.先ほどの手法で,もっとも近 いノードに送信した特徴量の集合をAとする. 集合Aのある1つの特徴量に注目すると、その 特徴量が射影された座標から,ある一定の距 離内にあるノードまでその特徴量をフラッディ ングする.このように送信することで,各ノー ドは分割数を増やしても,隣接する分割領域 の特徴量を得ることができる.このフラッディ ングよって得られた特徴量を集合Bとする.各 ノードはこれらの方法で得られる特徴量の集 合A, Bを区別する.対応点を探索する場合は, Aに対応付けられる特徴量をAUBの中から探 索する.これによって推定精度の向上が期待 できるが,データ通信量も増加する.実験で はその評価を行う.

3.4 事前計算

本論文ではSIFT特徴量空間のある2次元部分 空間を考え,その部分空間の分割を行う.この 2次元部分空間に特徴量が射影される際,デー タ通信の負荷を分散させるために特徴量は部 分空間内でより分散されることが望ましい.そ こで,本論文では,主成分分析を行い,特徴 量が分散される,部分空間をあらかじめ求め ておく.実際に学習画像の主成分分析より得 られた第1主成分と第2主成分に屋内,屋外と 森のシーンの特徴量を射影した図4,5を示す. 学習画像には屋内と屋外のシーン32枚から得 られた特徴点30000点を使用した.結果より, 屋内と屋外のシーンにおいては,第1主成分と 第2主成分の方向に十分に分散していることが わかる.しかし森のシーンにおいては,上手く 分散されているとは言えない.森などのシー ンにおいては別途手法を考える必要がある.

Fig. 4 サンプル画像で部分空間の射影を実行

Fig. 5 サンプル画像で部分空間の射影を実行

3.5 視野接続推定処理

本論文においては,各ノードは先ほどの学 習画像から得た主成分を取得しているものと する.この仮定下で視野接続推定を以下の手 順で行う.

- 1) 各ノードに特徴量空間の2次元部分空間の1点の座標に対応づける.
- 2) 各送信ノードは特徴量データを、その特徴量との部分空間内での距離が最も近い
 ノードに送信する(特徴量集合A).
- 3) 各受信ノードは送信された特徴量の座標 から一定距離内にあるノードへフラッデ イングを行う(特徴量集合B).
- 4) 特徴量集合Aの各要素に対応づけられる
 特徴量をABの中から探索し,対応点が
 見つかったら,送信元のノードへレポートを返す.
- 5) 対応点の数に基づいて視野接続推定す る.

Fig. 6 使用した画像

4. 実験

ネットワークとして以下を仮定して実験を 行う.物理的なネットワークについては,600 ×600のフィールドにランダムにノードを配置 し,ノード数ごとに定めた一定距離内のノー ドとネットワークを結ぶ.ノード数は16,64, 256と変化させて評価を行う.

カメラは 640×480 画素で,実際にはカメラ 1 台で図6の 4 シーンを 16 枚ずつ撮影した. 視野が接続していると判断する基準は,対応 点が 20 個以上得られた場合と経験的に定め た.2次元部分空間を定めるための学習画像と しては予備評価同様のシーン1とシーン3を用 いた.

推定精度の評価は,適合率 (precision),再 現率 (recall), F-measureを用いて行う.

式(1)は適合率を表しており, *R*は視野が接 続と正しく推定した数, *N*は視野が接続と推 定した数である.

$$precision = \frac{R}{N} \tag{1}$$

式(2)は再現率を表しており, *R*は視野が接続と正しく推定した数, *C*は視野が接続している正しい数である.

$$recall = \frac{R}{C}$$
 (2)

式(3)は適合率と再現率の調和平均でありF 値と呼ばれる.

$$F - measure = \frac{R}{\frac{1}{2}(N+C)} \tag{3}$$

ground truth は手動で求めた.画像中に1/8 以上視野を共有していた場合に視野が接続さ れていると判断した.ノード数を16よりも増 加させた場合の評価も行うが,ground truth の設定が煩雑になるのを避けるため,画像数 はあくまで16のままとし,近隣のノードが全 く同じ画像を取得するとした.

分割領域をまたいだ探索で一定の距離内の ノードにフラッディングすると述べたが,この 距離を変化させた時の推定精度とデータ通信 量の関係を調べる.そして分割領域をまたい だ探索を行った場合,行わない場合,そして フラッデイングの場合を比較する.フラッディ ングは予備評価とは異なり,データが送信さ れていないすべてのノードに送信するという 方法で行った.またクラスタリングに関して は,クラスタヘッドの周りのリンクに負荷に 集中してしまうことが予備評価によりわかっ た点や,提案手法が分割数とノード数を等し くしている点から,クラスタリングのとの比 較は行わない.

4.1 領域間探索のパラメータの評価

本論文では2次元に射影された特徴量の座標 は600×600のフィールドに射影している.そ のフィールドのスケールで,送信する距離の 半径を0~120に変化させた時のデータ通信量 と推定精度の評価を行った.4 つのシーンすべ てにおいて同様の傾向が見られたため,シー ン2のデータのみを図7,8に示す.分割数は 64とした.データ通信量は距離を増加させる ほど大きくなっている.また視野接続推定精 度に関しては,F値が徐々に高くなっている. データ通信量の増加を考慮にいれると距離は 60が妥当であると考える.以降の実験では距 離を60にして評価を行う.

Fig. 7 フラッディングを行う距離の変化に対 するデータ通信量 (シーン2,分割数64)

Fig. 8 フラッディングを行う距離の変化に対 するの視野接続推定精度 (シーン2,分割数64)

4.2 視野接続精度の評価

視野接続推定精度の適合率と再現率の結果 を図に示す.適合率における評価では,ブロー ドキャストと比べて提案手法は精度が落ちて いることがわかる.その原因は,提案手法に おいて,誤った視野接続推定を多く行ってい るためである.また,領域をまたいだ探索を 行った提案手法と行わなかった手法の結果を 比較すると,領域探索を行った手法の方が適 合率は高いことがわかる.また,再現率にお ける評価では、ほぼどの手法においてよい精 度を保っている.適合率が低い、つまり視野 が接続と誤って推定している場合、その接続 と推定したカメラ間で情報交換を行えば、実 際に視野が接続していいるかどうかの確認を とれる.一方で、再現率が低い、つまり視野 が接続していないと誤って推定してしまった 場合、実際に接続しているものを非接続と推 定したままなってしまう.このことから、本 論文では、適合率より、再現率の方が重要で あると考える.ブロードキャストと提案手法 を比較すると提案手法の方が適合率は低いが、 再現率は同水準の精度をあげている.

Fig. 11 データ通信量

4.3 データ通信量の評価

分割数の変化に対するデータ通信量の結果 を,ブロードキャスト,Chengらでのブロード キャスト,領域をまたいだ探索を行った提案手 法,行わなかった手法の結果を図11に示す.従 来手法であるChengらの方法より大幅に低減 された.

5. 結言

本論文では視覚センサネットワークにおい て,効率よく視野接続を推定するための手法 を提案した.視野接続は画像特徴量の対応づ けにより行うとし,その特徴量空間を分割す ることで分散化を行った.また領域をまたい だ対応点の探索も実現した.実験より,領域 をまたいだ対応点の探索を行うことによって 推定精度の劣化を抑えつつ,データ通信量も 従来手法と比較すると大幅に低減できること がわかった.実験において,ノードの物理配 置の特徴量空間へのマッピングは,各ノード は自身の物理的な位置を知っていると仮定し ていたため,今後は,一般のセンサネットワー クで用いられる物理位置情報の取得方法¹¹⁾を 用いて,各ノードの位置情報を取得し,この 位置情報の正確さが結果に及ぼす影響を調べ る必要がる.さらに,精度よい評価を行うた めに多くの画像で実験を行う必要がある.

参考文献

- R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt and L. Wixson, A System for Video Surveillance and Monitoring, Technical Report CMU-RI-TR-00-12, Carnegie Mellon University, 2000.
- Takashi Matsuyama and Norimichi Ukita, Real-Time Multitarget Tracking by a Cooperative Distributed Vision System, *Proceedings of the IEEE*, vol. 90, no. 7, pp. 1136–1150, 2002.
- Matthew Antone and Seth Teller, Scalable Extrinsic Calibration of Omni-Directional Image Networks, Intl. J. Computer Vision, vol. 49, no. 2/3, pp. 143–174, 2002.
- 4) Gregory C. Sharp, Sang W. Lee and David K. Wehe, Multiview Registration of 3D Scenes by Minimizing Error between Coordinate Frames, *IEEE Trans. Pattern Recognition and Machine Intelli*gence, vol. 26, no. 8, pp. 1037–1050, 2004.
- 5) Henry Detmold, Anton van den Hengel, Anthony Dick, Alexc Cichowski, Rhys Hill, Ekim Kocadag, Katrina Falkner and David S. Munro: Topology Estimation for Thousand-Camera Surveillance Networks, in First ACM/IEEE Intl. Conf. on Distributed Smart Cameras, pp. 195–202, 2007.

- 6) Zhaolin Cheng, Dhanya Devarajan and Richard J. Radke, Determining Vision Graphs for Distributed Camera Networks Using Feature Digests, *EURASIP J. Ad*vances in Signal Processing, vol. 2007, Article ID 57034, 2007.
- David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, *Intl. J. Computer Vision*, vol. 60, no. 2, pp. 91–110, 2004.
- Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris and Ion Stoica, Looking Up Data in P2P Systems, *Communications of the ACM*, vol. 46, no. 2, pp.43–48, 2003.
- Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh Govindan and Deborah Estrin, Data-Centric Storage in Sensornets, ACM SIGCOMM Computer Communications Review, vol. 33, no. 1, pp. 137–142, 2003.
- 10) Brad Karp and H. T. Kung, GPSR: Greedy Perimeter Stateless Routing for Wireless Networks, Sixth Annual ACM/IEEE Intl. Conf. on Mobile Computing and Networking, pp. 243–254, 2000.
- David Kempe, Alin Dobra and Johannes Gehrke, Gossip-Based Computation of Aggregate Information, 44th Annual IEEE Symp. on Foundations of Computer Science, 2003.