プラスチック製小型サイクロ減速機の開発, およびマニピュレータへの応用

## Development of cyclo gear reducers made of plastic, and its application to manipulator

○ 湯川 俊浩、箱崎 義英、星 勝博
 ○ T. Yukawa, Y. Hakozaki, K. Hoshi

# 岩手大学工学部機械システム工学科 Department of Mechanical Engineering, Faculty of Engineering, Iwate University

キーワード:サイクロ減速機 (Cyclo Gear Reducer),エピトロコイド歯車(Epitrochoid Gear), 非磁性マニピュレータ (Nonmagnetic Manipulator)

連絡先:〒020-8551 岩手県盛岡市上田4-3-5 岩手大学工学部機械システム工学科 湯川 俊浩 TEL:019-621-6403, FAX: 019-621-6403, E-mail: yukawat@iwate-u. ac. jp

### 1. 緒言

現在, MRIの画像情報に基づいて, 手術支援ロボットを稼動させて手術をおこなう試みがある. MRI装置に組み込む場合には,装置内が高磁場のため, ロボットを非磁性にする必要がある.

そこで本論文では、非磁性マニピュレータを開 発し、複数のマニピュレータの協調制御をおこな うことを目的とする.ロボット駆動系の減速機と して、プラスチック製のサイクロ減速機を製作す る.サイクロ減速機とは、様々な形状の歯車を用 いることができ、かみ合い率が通常のインボリュ ート歯車よりも約二倍から三倍程高く、高い減速 比を実現することができ、しかも伝達効率が高い ことを特徴とする減速機である<sup>1)-3)</sup>.サイクロ減速 機の主な材料として、ポリアセタール樹脂(POM) を用いる.

今回,このプラスチック歯車を3D加工機を用 いて製作する.試作の段階では,従来の遊星歯車 のインボリュート歯車のように,細かい歯を樹脂 材料<sup>4)</sup>で作ることは難しいが,エピトロコイド曲線 形状の歯車は,歯が細かくないので,強度や剛性 が低い材料でも歯車や減速機全体を作ることがで きる.

#### 2. サイクロ減速機

2.1 原理 サイクロ減速機には、遊星歯車列 と平行クランク機構が組み合わされている<sup>5)</sup>.この 減速機構の歯車の歯形としては、様々なものを用 いることができる.例えば、エピトロコイド曲線 や円弧を組み合わせた曲線などである.

サイクロ減速機内の遊星歯車に用いるエピトロ コイド曲線の方程式は,曲座標により,曲線の半 径をr,角度を $\theta$ ,aをインボリュート歯車でのピッチ円の半径,nを歯数,b/nをモジュールとすると、次のように表すことができる.

$$r = \sqrt{a^2 + \left(\frac{b}{n}\right)^2 + \frac{2ab}{n}\cos(\theta(n-1))}$$
(1)

*a*, *b*, *c*のパラメータの変化による曲線の形状を 図1に示す.本研究ではパラメータを*a*=17,*b*=18, *n*=18とする.

図2(a)は、サイクロ減速機内の遊星歯車列の原 理図である. 偏心した遊星歯車 P が静止した内歯 太陽歯車 S と噛み合うことで、太陽歯車の回転軸 を中心に高速で公転し、それと同時に低速で自転





(b) Paralleled crank mechanism

Fig. 2 Mechanism of the cyclo gear reducer

する.このとき,遊星歯車 P と静止した内歯太陽 歯車 Sの歯数差が小さいほど、大きい減速比が得 られる.

図2(b)の破線で囲んだ部分は、平行クランク機 構の原理図である. サイクロ減速機では, 遊星歯 車Pから出力歯車Oに向かい突き出している出力 ピンの中心と,出力歯車0の開口穴の中心が平行 四辺形に相当し、これが偏心距離に相当する.

太陽歯車Sと同一直線上にある出力歯車Oと遊 星歯車 P が平行クランク機構となることで, 常に 同軸上で回転力(トルク)が出力される.そして, 図2(a), (b)を合わせたものがサイクロ減速機と なる.

静止節である太陽歯車S及び遊星歯車それぞれ  $z_a, z_b$  とし、ピッチ円直径を  $d_a, d_b$  とする. 原動 次のように減速比 i を求める関係式が導かれる.

$$\frac{1}{i} = \frac{n_o}{n_a} = \frac{d_a - d_b}{d_b} = \frac{z_a - z_b}{z_b} = \frac{z_d}{z_b} - 1$$
(2)

したがって、 $z_a - z_b$ が小さいときに減速比が大きく なる.

サイクロ減速機を使うメリットとして, インボ リュート歯型により設計される通常の歯車による 減速機構では噛み合い率が低く, 一~二枚であり 一つの歯に対する負荷が大きく、滑り接触のため 磨耗や破損する可能性が高くなってしまう. しか し、サイクロ減速機は高い噛み合い率により伝達 力が分散し、かつ転がり接触で歯車が回転するた め、歯が破損しにくく、剛性が高くなる. したが って、一段で減速率を高くすることができ、小型 にすることが可能である.

サイクロ減速機に搭載するモータ 2.2 設計 ーは RS-385PH (マブチモーター製<sup>6)</sup>)である.そ の仕様を表1に示す.モーターの回転速度は

| Voltage<br>range | At maximum efficiency |          |         |
|------------------|-----------------------|----------|---------|
|                  | Torque                | Velocity | Current |
| $12 \sim 30$     | 8.3                   | 7420     | 410     |
| V                | mNm                   | rpm      | mA      |

Table 2 Property value of POM

| Modulus of longitudinal<br>elasticity | Tensile strength | Density           |
|---------------------------------------|------------------|-------------------|
| 3.1~3.6                               | 60 <b>~</b> 65   | 1.42              |
| GPa                                   | MPa              | g/cm <sup>3</sup> |





(a) Inside view of first step

(b) Outline of cyclo gear reducer Fig. 3 Cyclo gear reducer designing



(b) Outline of the cyclo (a) Inside view of the cyclo gear reducer gear reducer Fig. 4 Cyclo gear reducer



Fig. 5 The movement patterns of the link mechanism

7,420[rpm] である. 今回, 目標のトルクと回転速 度を出力させるために, 一段の減速比を17とし, 二段ギアとすることで17<sup>2</sup> = 289の減速比を得られ るようにした.

太陽歯車と遊星歯車の直径,歯数をそれぞれ  $d_a$ [mm],  $d_b$  [mm],  $z_a$ ,  $z_b$  とすると, (2)式から  $d_a$  = 18[mm],  $d_b$  = 17[mm],  $z_a$  = 18,  $z_b$  = 17 となる. 遊 星歯車は,エピトロコイド曲線を用いた形の歯車 であり,太陽歯車としては,中心にピンを立て, そこに中空円筒型のスペーサーを入れ,転がり接 触とすることで,歯への負担を減らす.図3(a)は一 段のサイクロ減速機の構造を示している.この上 に同構造の減速機構を加えることで,図3(b)のよ うに二段のサイクロ減速機となる.

**2.3 製作** サイクロ減速機を製作するにあた り,3D加工機である MDX-40 (Roland製<sup>7</sup>) および MDX-40 用回転軸ユニット ZCL-40 を用いた.この 装置は,汎用工作機械の旋盤やフライス盤を用い ると加工しにくく,複雑な三次元形状を製作する のに適している.

3D CADソフトウェアを用いて、サイクロ減速機 を設計し、3D加工機で製作した減速機を 図4 (a)、 (b) に示す. 材料はPOMを用いる. ここで、POM を用いる長所は、加工性が良く、軽量であるとい うことである. 表2に POM の材料特性を示す.

## 3. マニピュレータへの応用

3.1 マニピュレータの設計 マニピュレータ の主な材料として、サイクロ減速機と同様に、非 磁性のPOMを用いる.マニピュレータの基本構造 は、パラレルリンク機構である.パラレルリンク 機構は、四つのリンクから成り立っており、一本 のリンクを固定し、他のリンクの一つを回転させ ることで限定連鎖となり、四本のリンクの平行四 辺形を形作る機構である.

図5 に、パラレルリンク機構の動作パターンを



Fig. 6 The geometry of the parallel link mechanism



(a) Front view (b) Side view Fig. 7 Parallel manipulator designing

示す.脚の中心に対し、対称に配置された二つの モーターにより、図5(a),(b),(c)に示すようなパラ レルリンク機構のパターンを作り出している.二 つのモーターのうち、(紙面に対して)手前のモ ーターを固定し、もう片方の(奥の)モーターが 回転することで、図5(a)から図5(b)の形へ動く.



Fig, 8 Parallel manipulator



Fig. 9 Cooperative dual-arm system

逆に、奥側のモーターを固定し、手前側のモータ ーを回転することで、図5(a)から図5(c)の形に動く. また、それぞれのモータを逆方向に等速で動かす ことで、四本のリンクが形作る四角形の形を変え ることなく動かすことができる.

3.2 パラレル機構の運動学 つぎに、パラレ ルリンク機構の運動学を示す.パラレルリンクの 機構図を図6に示す.O点を原点とし、図6に示す ようにx軸、y軸をとる.リンク1までの回転角度 を $\alpha$ 、リンク2までの回転角度を $\beta$ として、x軸を 基準に反時計回りに角度をとる.リンク1、リンク 2、リンク3の長さをそれぞれ $l_1$ 、 $l_2$ 、 $l_3$ とする. これらの値から先端座標 (X,Y)とリンク3の角度  $\theta$ を求める.リンク1とリンク2の先端座標を ( $x_1, x_1$ ),( $x_3, y_3$ )とすると,回転角度 $\alpha, \beta$ から

$$x_1 = l_1 \cos \alpha, \quad y_1 = l_1 \sin \alpha$$
  

$$x_3 = l_2 \cos \beta, \quad y_3 = l_2 \sin \beta$$
(3)

と表される. リンク1とリンク3をつないでいるリ ンク4は、両端が自由端であり、角度は $\alpha$ 、 $\beta$ から 求められるので、リンク4とリンク3の交点の座標  $(x_2, y_2)$ は、(3)式から

$$x_2 = x_1 + x_3 = l_1 \cos \alpha + l_2 \cos \beta$$
  

$$y_2 = y_1 + y_3 = l_1 \sin \alpha + l_2 \sin \beta$$
(4)

と表される.したがって,座標点( $x_2, y_2$ )を通るリ ンク3の鉛直方向からの角度について,反時計回り を正とすると,角度 $\theta$ は

$$\theta = \tan\left(\frac{x_2 - x_3}{y_2 - y_3}\right)^{-1} = \tan\left(\frac{x_1}{y_1}\right)^{-1} = \frac{\pi}{2} - \alpha$$
 (5)

となり, $\beta$ に依存しないことがわかる.したがって,リンク3の先端座標(X,Y)は

$$X = l_1 \cos \beta + l_2 \cos \alpha - l_3 \cos \theta$$
  
=  $l_1 \cos \beta + l_2 \cos \alpha - l_3 \sin \alpha$   
$$Y = l_1 \sin \beta + l_2 \sin \alpha - l_3 \sin \theta$$
  
=  $l_1 \sin \beta + l_2 \sin \alpha - l_2 \cos \alpha$  (6)

となる.この(6)式の先端座標を元に、マニピュレ ータの制御をおこなう.

3.3 マニピュレータの製作 サイクロ減速機 と同様に、3D CADソフトウェアにより、マニピ ュレータを設計し、3D加工機 MDX-40 を用いて 製作した.

3D CADソフトウェア (Solid Works) により設計 したマニピュレータを図7に示す. 図7(a)は正面図, 図7(b)は側面図である. 図7のマニピュレータの写 真を図8に示す.

# 4. 制御系

4.1 H8マイコン マニピュレータを制御する システムを図9に示す.マニピュレータの制御は H8マイコン(AKI-H8/3052F-秋月電子通商<sup>8)</sup>)を用い ておこなう.H8マイコンは,高速・高分解能A/D・ D/Aコンバータを内蔵しており,エンコーダでの モーター制御に適している.高速RS232ドライ バ・レシーバICを使用しており,パソコンや他の マイコンとの通信が可能である.

図10に、H8マイコンと周辺機器の回路図を示す. ロータリーエンコーダからのパルスをI/OポートA で受け、そのパルスをカウントすることで回転数 を検出する.この検出された回転数を元に、マニ ピュレータを位置制御する.

4.2 モータードライバ モータードライバ には、STK681-210-E (三洋製,正・逆モータード ライバ)を用いる.このモータードライバは、外部 からの入力信号で正転・逆転・ブレーキ動作が可能である.H8マイコンのI/Oポート6 (図10(a))から 送信された入力信号 (図10(b)中の IN 1, IN2,及



Fig. 10 Electronic circuit diagram



Fig. 11 Manipulator control system



Fig. 12 Pulse width modulation

| Table 3  | Rotation | measurement | result |
|----------|----------|-------------|--------|
| r aore o | rotation | measurement | rebuit |

|                            | Motor           | First step  | Second step |
|----------------------------|-----------------|-------------|-------------|
| Average of rotation        | 3213.8<br>[rpm] | 183.2 [rpm] | 10.93 [rpm] |
| Gear<br>reduction<br>ratio | 1.0             | 17.5        | 294.0       |

びIN3)の組み合わせによって制御をおこなう.実際に製作したマニピュレータの制御システムの写真を図11に示す.

**4.2 PWM制御** モーターの速度制御は, PWM (Pulse Width Modulation) 制御を用いておこなう. 図12に示すように,一定周期のパルス信号のHレ ベルとLレベルの Duty 比を変化させて速度制御 をおこなう. H8マイコンでは, ITUレジスタのタ イマーモードレジスタによりPWM制御をおこな うことができる<sup>9</sup>.

### 5. 実験

**5.1 実験内容** 開発したサイクロ減速機の性能評価をおこなう.評価として,モータとギヤの

回転数を調べる.モーター単体,一段ギア,及び 二段ギアでの回転数を計測した.ロータリーエン コーダにはCB-2500LC (ライン精機)を用い,パソ コンによりカウンタボードを用いて計測した.そ の結果を表3 に示す.

**5.2 実験結果** モーターの適正電圧は12~30[V] であるが,エンコーダ計測の都合上,5[V]で回転 速度を計測した.実験の結果,モーター単体での 回転速度は3213.8[rpm]であった(表3).

ー段ギアでのサイクロ減速機の回転速度を測定 した結果,183.2[rpm]となり,減速比は17.5とな った.理論値との誤差は2.9[%]であった.

二段ギアでのサイクロ減速機の回転速度を測定 したところ,10.93[rpm]であり,減速比は294.0で あった.理論値との誤差は1.7[%]であった.

5.3 考察 一段ギアと二段ギアの双方共に,理 論値に比べて少ない回転数となった.これは,高 い減速比のため,トルクが大きくなり,POM材料 の部品にかかる負荷が大きくなり,剛性が弱まり, 摩擦によって回転しにくく,滑りにくくなったた めと考えられる.

#### 6. 結言

本論文では、サイクロ減速機を3DCADで設計し、 3D加工機を用いて製作した.また、サイクロ減速 機を用いたマニピュレータを設計、製作した.そ して、減速機単体とマニピュレータの動作確認を おこなった.

今後は、マニピュレータの位置制御をおこなう 予定である.

### 参考文献

- Piermaria Davoli, Carlo Gorla, Francesco Rosa, Claudio Longoni, Franco Chiozzi, and Alessandro Samarani, "Theoretical and Experimental Analysis of a Cycloidal Speed Reducer", Proc. of PTG 2007 ASME 2007 10th ASME International Power Transmission and Gearing Conference, DETC2007-34098, Sept. 4-7, 2007, Las Vegas, USA
   Kosse Vladis, "Using Hysteresis Loop and Torsional
- Kosse Vladis, "Using Hysteresis Loop and Torsional Shock Loading to Assess Damping and Efficiency of Cyclodrives", 14th Int. Cong. on Sound and Vibration (ICSV14), pp. 9-12 July 2007.
- 3) 住友重機(株)HP, http://www.shi.co.jp/
- 加藤 康司,前川一郎,小野 陽,朝倉書店(1989) 167-181
- 5) 小川 潔, 加藤 功, 機構学, 森北出版株式会社 (1971)161-169
- 6) マブチモータ(株)HP, http://www.mabuchi-motor.co.jp/
- 7) Roland DG HP, http://www.rolanddg.co.jp/
- 8) 秋月電子通商HP, http://akizukidenshi.com/
- 9) 横山直隆, 片岡厳,C言語によるH8マイコンプログ ラミング入門(2003)