計測自動制御学会東北支部 第 257 回研究集会 (2010.5.31) 資料番号 257-8

Prop-hanging 状態における UAV の姿勢安定化

Attitude stabilization of UAV in prop-hanging

○藤田 芳大,佐藤 淳

○ Yoshihiro Fujita, Atsushi Satoh

岩手大学

Iwate University

キーワード: UAV (Unmanned Aerial Vehicle), 固定翼機 (fixed wing aircraft), 姿勢安定化 (attitude stabilization), ホバリング (hovering), Prop-hanging

連絡先: 〒 020-8551 岩手県盛岡市上田 4-3-5 岩手大学大学院 工学研究科 機械システム工学専攻
佐藤 淳, Tel: 019-621-6404, E-mail: satsushi@iwate-u.ac.jp

1 緒言

UAV(Unmanned Aerial Vehicle) とは自律的に 飛行することが可能な無人航空機のことである. そのため、人間が介入し難い危険な場所での調 査や病原体の探知などに利用することが期待さ れ、その用途をさらに広げるための開発が進め られている. UAV が多様な環境で任務を遂行す ることを期待される中、固定翼機に関しては、機 体を損傷することなく安全に回収することが困 難という大きな問題点がある.そこで、固定翼 機を損傷することなく安全に回収するための手 法として、Prop-hanging(機首を鉛直上向きにし たまま空中で静止した状態)と呼ばれるアクロ バティックな飛行を利用して、固定翼機をホバ リングさせる回収方法が提案されている[1].[2].

本研究では、将来的に小型固定翼機による Prophanging 状態での自律飛行をし、UAV の安全回 収の実現に向け、Prop-hanging 状態での姿勢安 定化制御を行うことを目的とする.

2 目的

本研究では、モデル機が Prop-hanging 状態を 維持するために必要なスロットル量を決定し、角 度フィードバックによる Prop-hanging 状態にお けるピッチ軸回りの姿勢安定化の実現を目的と する.

3機体諸元

本研究で使用するモデル機はホクセイモデル 製 Petit Primus EP(以下モデル機)である.こ の機体は、アクロバット機と呼ばれるタイプで、 ホバリング飛行といった特殊な飛行方法をする に適した機体である.Fig.1にモデル機を示し、 Fig.2 は各寸法を示す.

3.1 翼面積,重量,重心位置

主翼面積と重心位置はホクセイモデルが公開 している機体緒元を参考にした.重量はブラシ レスモータ,サーボモータ,バッテリ等すべての ハードウェアを積載した状態での値を示す(Table1, 2).

Fig. 1 Petit Primus EP

Fig. 2 Petit Primus EP 寸法 [mm]

Fig. 3 重心位置

Table	1 翼 面積
翼	面積 [m ²]
主翼	$S_1 = 0.2646$
水平尾翼	$S_2 = 0.07125$
垂直尾翼	$S_3 = 0.03934$

Table 2	重畳	搭載機צ	重心位置
	- 王里.	10 年3/72.66。	単小川川良

総重量	0.6874[kg]
搭載機器	モーター,アンプ,バッテリー レベルコンバーター,スイッチング電源 サーボモータ,制御基板,XBee 角度センサ,プロペラ
重心位置	主翼前縁から胴体後方へ 110[<i>mm</i>] 胴体下部から上部へ 82[<i>mm</i>]

4 センサ (IMU)

本研究で使用した姿勢角センサ (IMU) は Xsens 社製の MTi-G である. なお,本研究では GPS は 使用せず, Prop-hanging 状態におけるモデル機 のピッチ角の測定に使用する. MTi-G の諸元を Table3 に示す.

Fig. 4 Xsens 社製 MTi-G

Table 3 M	Ti-G の諸元					
GPS 搭載可能						
概略寸法	$58 \times 58 \times 33 \ mm$					
重量	68 g					
	3D モーション					
出力	3D 加速度					
	3D ターンレート					
	3D 地球磁場					
計測範囲	360° (3D)					
最大角度率	$\pm 300^{\circ}/s$					
最大加速度	$\pm 50m/s^2$					
地球磁場	±750m ガウス					
ダイナミック分解能	0.05°					
スタティック精度	Pitch/Roll: < 0.5°					
	Heading: $< 1.0^{\circ}$					
ダイナミック精度	1°RMS					
インターフェース	RS-232					
電圧・電力	$5V \sim 30V$					
動作温度範囲	-20°C~60°C					

5 準備

5.1 座標軸

機体軸は機体の重心を通り、機首の向きを正 にとった軸を X_B 軸とする.また、胴体の対称面 と垂直になるよう右翼の向きを正に Y_B 軸、 X_B , Y_B , Z_B 軸が直交右手系になるよう Z_B 軸を取 る.機体軸および地上固定座標軸を Fig.5 に示 す. Y_B 軸回りの角度をピッチ角と定義し、反時 計回りを正とする.

Fig. 5 機体軸, 地上固定座標軸

5.2 Prop-hanging 状態での線形モデル

論文より, Prop-hanging 状態まわりの微小運動の線形モデルは次のように書ける [2].

$$\ddot{x}_B = \frac{1}{m} \hat{\delta}_{throttle}$$
 (1)

$$\ddot{y}_B = gq_3^{dev} \tag{2}$$

$$\ddot{z}_B = -gq_2^{dev} \tag{3}$$

$$\dot{p} = C_{L_{\delta_{ail}}} \frac{1}{2} \rho u_{prop}^2 A_{aileron, prop} \qquad (4)$$
$$\times L_{aileron, prop} \frac{1}{I_x} \hat{\delta}_{aileron}$$

$$\dot{q} = C_{L_{\delta_{ele}}} \frac{1}{2} \rho u_{prop}^2 A_{elevator,prop} \frac{L_{elevator}}{I_y}$$
(5)

$$\times \delta_{elevator} - C_{ele_d} u_{prop} q$$

$$\dot{r} = C_{L_{\delta_{rud}}} \frac{1}{2} \rho u_{prop}^2 A_{rudder,prop} \frac{L_{rudder}}{I_z} \quad (6)$$
$$\times \delta_{rudder} - C_{rudz} u_{prop} r$$

$$\frac{d}{dt}(q^{dev}) = \begin{vmatrix} 0\\ \frac{p}{2}\\ \frac{q}{2}\\ \frac{r}{2} \end{vmatrix}$$
(7)

この運動モデルから,操作舵面が小さければ誘 導抗力は小さく,ホバリング状態でのスロット ル量は一定としてよい.また, Prop-hanging 状 態ではトルクロールを抑制するためにピッチ軸 回りの姿勢制御も必要である.

6スロットル特性の推定

6.1 実験装置の構成

本実験の実験装置配置図, 配線図を Fig.6,7 に 示す.

Fig. 7 配線図

6.2 実験方法

モデル機体に搭載するモーター (Hyperion 製 Z-2231-20) とプロペラ (APC PROPELLERS 製 LP 10047) の組み合わせによる,推力の測定方法 を示す. Fig.6 のように机にクランプで固定した スラストメーター (TAHMAZO 製 48562) にモー ターを取り付け,サーボテスターミニでモータア ンプへ入力する PWM 信号のパルス幅を 1.0ms ~2.0ms まで 0.1ms ずつ増加させて,各々のパ ルス幅での推力を測定した.また,推力の測定 と同時に各々のパルス幅において,Emeter (AIR CRAFT 製 HP-EMETER) でモーターに加わる電 流・電圧を計測し,タコメーター (電子通商株 式会社製 ST-6234B) でプロペラの回転数を測定 した.

6.3 実験結果

推力測定実験は4回行い,1回目から4回目ま での実験結果の平均をTable4に示す.Table4を もとに,パルス幅と推力の関係をMATLABを用 いて1次の最小二乗近似をした結果がFig.8であ る.なお、モーターの不感帯領域である1.0ms ~1.1msとアンプの電流リミッターが作動する 1.9ms~2.0msのデータは除いた.

最小二乗近似から求まった パルス幅 (*x*) と 推力 (*y*) の関係は,

$$y = 1.6009x - 1.7635 \tag{8}$$

また, Fig.8 において, 各パルス幅での絶対 誤差を $e_i(i = 1, 2, 3, \dots, 8)$ とすると, 平均誤差

Fig. 8 パルス幅と推力の関係

 $e_{ad} = \sum_{i=1}^{8} e_i/8 = 0.016075$,最大誤差 $e_{max} = -0.0800$ であった. (8) 式より,Prop-hanging に 必要なスロットル量は、パルス幅約 1.54ms で あることがわかった.

Table 4 実験値(推力測定実験 4 回 の平均)

パルス幅 (ms)	1.1	1.2	1.3	1.4	1.5
推力 (kg)	0.07750	0.14375	0.31125	0.43375	0.56125
電流 (A)	0.375	1.675	3.475	5.600	7.825
電圧 (V)	12.0100	11.9800	11.9300	11.8850	11.8275
回転数 (rpm)	1868.75	3295.50	4154.75	4884.50	5457.50
表面温度 (℃)	24.675	25.775	28.275	31.700	34.700
the second secon					
パルス幅 (ms)	1.6	1.7	1.8	1.9	2.0
パルス幅 (ms) 推力 (kg)	1.6 0.76250	1.7 0.99000	1.8 1.18250	1.9 1.17250	2.0 1.17875
パルス幅 (ms) 推力 (kg) 電流 (A)	1.6 0.76250 11.550	1.7 0.99000 16.000	1.8 1.18250 21.150	1.9 1.17250 20.975	2.0 1.17875 21.125
パルス幅 (ms) 推力 (kg) 電流 (A) 電圧 (V)	1.6 0.76250 11.550 11.7350	1.7 0.99000 16.000 11.6300	1.8 1.18250 21.150 11.4875	1.9 1.17250 20.975 11.4875	2.0 1.17875 21.125 11.4850
パルス幅 (ms) 推力 (kg) 電流 (A) 心圧 (V) 回転数 (rpm)	1.6 0.76250 11.550 11.7350 6169.75	1.7 0.99000 16.000 11.6300 6788.25	1.8 1.18250 21.150 11.4875 7291.75	1.9 1.17250 20.975 11.4875 7281.25	2.0 1.17875 21.125 11.4850 7294.00

7ピッチ角制御実験

7.1 ピッチ角制御実験の概略

ピッチ角制御実験装置の概略を Fig.10 に示す. モデル機の重心にベアリングがあり, ピッチ軸回 りに自由に回転するように支持されている.モ デル機に搭載された角度センサからピッチ角の 情報を PIC マイコンが受信し, Prip-hanging 状 態で姿勢角を安定化させるエレベータ舵角入力 をリアルタイムで計算し, それに応じた PWM 信号をサーボモーターに入力する.また、角度 センサから得られたピッチ角の情報とエレベー タ舵角は XBee 無線モジュールによって計測用 パソコンに送られる.なお,ピッチ角制御実験 では PI コントローラを用いて姿勢を制御している. この実験におけるフィードバック制御のブロック線図を Fig.9 に示す.

Fig.9 ブロック線図

Fig. 10 概略図

7.2 実験 I

実験 I では、Prop-haging 状態において、ピッ チ軸回りのモデル機の姿勢が PI 制御によって 安定化されていることを確認するための実験を 行った、実験方法、実験結果を以下に示す.

7.2.1 実験方法

まず,限界感度法を用いて比例ゲイン k_p と 積分ゲイン k_i を定める.本実験では $k_p = 0.12$, $k_i = 0.001$ と決定した.そして,初期ピッチ角を 3.6°,目標ピッチ角を0°とし,モデル機のピッ チ角応答を計測する.

7.2.2 実験結果

実験 I の実験結果を Fig.11 に示す. PI 制御が 開始されてから 5 秒後のデータより,最大誤差 は 1.074°,平均誤差は 0.005° と求められた.こ の結果から,実際に Prop-hanging 状態でホバリ ングするには十分な制御性能であることが確認 された.また,±1°の範囲で振動しているが,こ の原因として,機体に搭載しているセンサなど の出っ張りによるプロペラの後流の乱れ,支持 装置の固有振動が挙げられる.

Fig. 11 実験結果 I

Fig. 13 実験結果Ⅱ

8 結言

7.3 実験Ⅱ

実験IIでは、Prop-hanging 状態において、コ ントローラが決定した操作量に外乱が加えられ たときの応答を取り、十分な制御性能が確保さ れているかどうか確認するための実験を行った. 実験IIにおけるブロック線図をFig.12に示す.

7.3.1 実験方法

目標ピッチ角を 0° とし,次式で表されるテス ト用外乱 *d*(*t*)を加え,モデル機のピッチ角応答 を計測する.

$$d(t) = \begin{cases} 0.4 & k\tau \leq t \leq k\tau + \Delta \ (k = 1, 2, \cdots, n) \\ 0 & other \end{cases}$$
(9)

τ:パルスの周期, Δ:パルス幅

7.3.2 実験結果

実験 II の実験結果を Fig.13 に示す. 1.9[*s*] の 時間で定常状態に追従しているので制御性能は 十分であることが確認された. モデル機に搭載されたモーターおよびプロペ ラの組み合わせにおけるパルス幅と推力の関係 を実験的に決定し, Prop-hangingに必要なスロッ トル量を決定した.

また、PIコントローラを用いたピッチ角制御 実験装置を開発し、ピッチ軸回りの姿勢安定化 を実現した.今回行った実験は、PI制御によっ てピッチ軸回りの姿勢が安定化されていること の確認、また、外乱を加えても十分な制御性能 が確保されていることの確認を目的とし、それ らの結果からモデル機のピッチ軸回りの姿勢は 安定化され、実飛行させるには十分な制御性能 であることが確認された.今後は、ヨー、ロー ル軸回りの姿勢安定化を行い、Prop-hangin 状態 でのホバリング飛行を実現させたい.

参考文献

- William E. Green and Paul Y. Oh, "A Fixed-Wing Aircraft for Hovering in Caves, Tunnels, and Buildings", Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 14-16, 2006.
- [2] drian Frank, james McGrew, Mario Valenti, Daniel Levine, Jonathan P. How "Hover, Transition, and Level Flight Control Design for a Single-Propeller Indoor Airplane", Technical Report Aerospace Controls Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology.