計測自動制御学会東北支部 第 259 回研究集会 (2010.7.9) 資料番号 259-4

1 軸サーボ系の摩擦モデリングと位置決め制御

Friction Modeling and Position Control of One Axis Servo System

○金子高太郎, 佐藤俊之, 齋藤直樹

O Kotaro KANEKO, Toshiyuki SATOH, Naoki SAITO

秋田県立大学

Akita Prefectural University

キーワード: 位置制御 (motion control), 摩擦補償 (friction compensation), サーボ系 (servo system), ボールねじ (ball screw)

連絡先: 〒 015-0055 由利本荘市土谷字海老ノロ 84-4 秋田県立大学大学院 システム科学技術研究科 機械知能システム学専攻 自動制御系研究室 金子高太郎,

Tel.: (0184)27-2000(内線 2536), Fax.: (0184)27-2188, E-mail: m12a011@akita-pu.ac.jp

1. はじめに

比較的大きな変位を伴う1軸サーボ系の位置 決め制御において、一般化動摩擦モデル(Generalized Kinetic friction model) あるいはその 派生モデルを用いたモデルベースト制御手法が 提案されている¹⁾. この手法は、オフラインで 同定された摩擦モデルを用いた直接的な摩擦補 償と、位置

・速度偏差、目標角速度および慣性 モーメントの値から操作量トルクを生成するモ デルベースト制御則の組み合わせにより良好な 追従性能を達成するものである.しかし、この 摩擦補償法をモデルベースト制御以外の制御則 と組み合わせても高い位置決め制御を実現でき る可能性がある. そこで本報告では、モデルベー スト制御則の代わりに LQ サーボ系およびモデ ル予測制御の一種であるモデル機能制御 (Predictive Functional Control; PFC) を含むいつ くかの制御則を実装し、それらの出力と追従性 能を調べることで,各制御則の比較検討をおこ なう.

2. 実験装置と摩擦モデリング

本報告で使用する実験装置の仕様を表1に,外 観図を図1に示す.なお,本報告ではキャリッ ジを動かす範囲を明確にするために,約12 cm 毎にAB, BC, CD, DEの4つの測定区間を設 けた.このうち本研究では区間BCを用いるこ ととする.以下に本報告で用いる一般化動摩擦

Fig. 1 External view of experimental apparatus

Table 1Specification of experimental appa-
ratus

駆動モータ	0.28 Nm, 1660 rpm, 24.0 V	
エンコーダ	カウント/回転(分解能):1000	
モノキャリア	日本精工, MCM08050H10K,	
	ストローク: 500 mm,	
	ボールねじのリード:10 mm	

(GK) モデルを示す.

$$T_{f} = \begin{cases} \left(T_{c} + (T_{s} - T_{c}) e^{-\left|\frac{\dot{\theta}}{\dot{\theta}_{Str}}\right|^{2}} \right) \operatorname{sgn}\dot{\theta} + D\dot{\theta}, \dot{\theta} \neq 0, \\ T_{e}, |T_{e}| < T_{s}, \dot{\theta} = 0, \ddot{\theta} = 0, \\ T_{s}\operatorname{sgn}T_{e}, |T_{e}| > T_{s}, \dot{\theta} = 0, \ddot{\theta} \neq 0. \end{cases}$$
(1)

ここで、 T_c はクーロン摩擦トルク、Dは粘性摩 擦係数、 T_e は外部トルク、 T_s は静止摩擦領域 と動摩擦領域との間の境界を特徴付ける brakeaway トルク、 $\dot{\theta}_{Str}$ はストライベック速度である (Fig.2(b) 参照).

次に実機の摩擦特性を求めるために、二つの 異なった測定を実行する.一つは breakaway ト ルクを得るための測定である.まずキャリッジ を測定する区間の前の区間の端に移動させ、指 示電圧を 0.1V/s の割合で徐々に増加させる. そ して,エンコーダが微小変位(エンコーダ80パ ルス分)を検出した瞬間に、その時の位置と制 御電圧を記録する.これを10回ずつ,各区間 で正回転と逆回転の両方を行う. もう一つは動 摩擦パラメータ値を得るための測定である. す なわち、キャリッジを定速で動かす際の発生ト ルクを記録する.なお、定速運転は PID コント ローラにより実現しており, 速度を様々に変え ながら測定を繰り返す(各区間で正回転と逆回 転の両方を記録).また,発生トルクは電流モニ タのモニタ電圧をトルクに換算するプログラム によって計算している.

実機の摩擦モデルを同定するためのパラメー タは、breakaway トルク T_s 、クーロン摩擦トル ク T_c 、ストライベック速度 $\dot{\theta}_{Str}$ 、粘性摩擦係数 Dの4つである.実験データから $T_s \ge T_c$ を求 めることは容易だが、 $\dot{\theta}_{Str} \ge D$ の正確な値を求 めることは容易ではない.そのため、その二つ の係数を最小二乗法に基づくカーブフィットに よって求めた.なお、同定の際には 0 rad/s に

Fig. 2 (a) The Static-plus-Coulombplus-Viscous (SCV) friction model; (b) The General Kinetic Friction (GK) model

Fig. 3 Observed value of friction torque and GK friction model torque(zone BC)

相当する速度を正回転側及び逆回転側において それぞれ±0.001 rad/s とした.この理由は,速 度が0 rad/s の時に対応するトルクが二つ存在 するという状態を避けるためである.摩擦モデ ルの同定結果を式(2)と図3に示す.

$$T_{fBC} = \left(0.0346 + (0.0588 - 0.0346) e^{-\left|\frac{\dot{\theta}}{0.2830}\right|^2}\right) \operatorname{sgn}\dot{\theta} + 3.0216 \times 10^{-4} \dot{\theta}.$$
 (2)

3. 摩擦補償と位置決め制御

制御対象の状態方程式は次のようになる.

$$\begin{pmatrix} \dot{\theta}(t) \\ \ddot{\theta}(t) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{D}{J} \end{pmatrix} \begin{pmatrix} \theta(t) \\ \dot{\theta}(t) \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{K_s}{J} \end{pmatrix} e_a(t) .$$
(3)

ここで、Ksはドライバ指示電圧から発生トルク への変換係数、Jは慣性モーメント、Dは粘性摩 擦係数、 e_a は入力電圧、 θ は角度である.なお、 Ks = 0.0801 N·m/V、 $J = 1.6928 \times 10^{-4}$ kg·m²、 $D = 5.6201 \times 10^{-4}$ kg·m²/s である.

式 (2) を用いた摩擦補償は図4のようにおこ なう.ここで、Tは発生トルク、 ω は角速度、 T_f

Fig. 4 Block diagram for friction compensation

は角速度に応じて外乱トルクを発生する非線形 関数である.

次に PID 制御, PD 制御, モデルベースト (MB) 制御, LQ サーボ系, および PFC の各制 御則を設計し実装する. なお,本報告ではむだ 時間を無視する. PID 補償器と PD 補償器の伝 達関数はそれぞれ

$$C(s) = K_P + \frac{K_I}{s} + \frac{K_D s}{\varepsilon s + 1}, \qquad (4)$$

$$C(s) = K_P + \frac{K_D s}{\varepsilon s + 1} \tag{5}$$

で与えられる. ここでは, $\varepsilon = 0.006$ に取り, PID 制御をおこなう場合には $K_P = 2.2$, $K_I = 2.6$, $K_D = 0.1$ に取る. また, PD 制御を行う場合 には $K_P = 2.3$, $K_D = 0.1$ とする. また, モデ ルベースト (MB) 補償器は

$$C(s) = J\ddot{\theta}_d + K_d\dot{e} + K_p e \tag{6}$$

で与えられる.ここで θ_d は目標値, e は目標 値と出力の偏差, $K_d = 1.3$, $K_p = 2.5$ である. LQ サーボ系の制御則は

$$u = -K \begin{pmatrix} \theta \\ \dot{\theta} \end{pmatrix} + \bar{N}\theta_d \tag{7}$$

で与えられる.評価関数を

$$J = \sum_{k=0}^{\infty} \left(x_d \left(k \right)^T Q x_d \left(k \right) + r e_a \left(k \right)^2 \right)$$
 (8)

として, 重み行列を

$$Q = \begin{pmatrix} 1000 & 0\\ 0 & 1 \end{pmatrix} , R = 1$$
 (9)

に取ると,

$$\begin{cases} K = (k_1 \ k_2) = (24.6751 \ 0.8376) \\ \bar{N} = 24.6751 \end{cases}$$
(10)

を得る. PFC の制御則は以下の式のようになる.

$$u\left(k
ight) =$$

$$egin{aligned} k_{0}\left\{ c\left(k
ight)-y_{p}\left(k
ight)
ight\} &-\sum_{m=1}^{d_{e}}k_{m}e_{m}\left(k
ight)\ &+
u_{x}^{T}x_{M}\left(k
ight). \end{aligned}$$

ここで, c(k) は設定値 (set-point), $y_p(k)$ は実 プラント出力, d_e は将来の予測誤差を多項式近 似する際の次数, $e_m(k)$ は将来の予測誤差を多 項式近似する際に用いる未知係数, x_M は制御 対象モデルの状態変数である.また, k_0 , k_m , ν_x は, 以下の式によって与えられる.

$$k_{0} = \nu^{T} \begin{pmatrix} 1 - \alpha^{h_{1}} \\ \vdots \\ 1 - \alpha^{h_{n}} \end{pmatrix}, \quad k_{m} = \nu^{T} \begin{pmatrix} h_{1}^{m} \\ \vdots \\ h_{n_{h}}^{m} \end{pmatrix},$$
$$\nu_{x} = - \begin{pmatrix} C_{M}^{T} \left(F_{M}^{h_{1}} - I \right) \\ \vdots \\ C_{M}^{T} \left(F_{M}^{h_{n}} - I \right) \end{pmatrix}^{T} \nu,$$
$$F_{M} \in \mathbb{R}^{n \times n}, C_{M}^{T} \in \mathbb{R}^{1 \times n}. \quad (12)$$

ここで、 α は $\alpha = e^{-3T_s/T_{CLRT}}$ で与えられ、 T_s はサンプリング周期、 T_{CLRT} は希望する閉ループ応答時間 (set-point の 95% に応答が到達するために必要な時間) である.また、 h_j は一致点 (coincidence point) ($j = 1, 2, ..., n_h$)である.なお、 ν は以下の式で与えられる.

$$\nu = (y_B(h_1) \dots y_B(h_{n_h}))^T \left\{ \sum_{j=1}^{n_h} y_B(h_j) y_B(h_j)^T \right\}^{-1} U_B(0).$$
(13)

ここで,

 $y_B(h_j) = (y_{B_1}(h_j) \dots y_{B_n}(h_j))^T, U_B(0) = (10 \dots 0)^T.$ (14) ここでは PFC の設計パラメータである希望閉 ループ応答時間を 0.005, 基底関数の最大次数 を 1 に取り, 過去 20 サンプル分のモデル誤差 データに基づく自動補償を有効にしている.

正弦波状の目標値に対する追従性能とコント ローラの出力を調べる.図5に追従誤差を、図6 にコントローラの出力を示す.また、表2に最 大追従誤差を、表3に12秒まで制御するのに 要した操作量のエネルギを示す.すなわち、以 下の式で計算して求めた.

$$\sqrt{\int_{0}^{12} u(t)^2 dt}.$$
 (15)

Fig. 5 Tracking errors with different control schemes

Fig. 6 Control efforts with different control schemes

なお、各制御則のゲインは不安定になる限界の 直前まで調整した.実験結果を見ると、どの制 御則においても摩擦補償を施した方が追従誤差 が小さくなっていることが分かる.追従性能に 関しては、古典制御の中では PID 制御が最も良 好な結果となった.これは比較した制御則の中 で唯一積分要素を含んでいたためであると考え られる.表2より、PFC は最も追従性能が優 れていることがわかる.また、表3より、MB はコントローラ出力のエネルギーが最も低かっ た.なお、LQ と PFC に関しては実験中に発振 が起こり、実機の動作中に音が出ていた.この 原因としては高周波領域においてややハイゲイ

制御則	最大追従誤差 (rad)	最大追従誤差 (rad)
	摩擦補償なし	摩擦補償あり
PID	0.3598	0.1669
PD	0.3704	0.1737
MB	0.2962	0.1822
LQ	0.1334	0.1099
PFC	0.0628	0.0560

Table 3Energy of control effort

制御則	操作量のエネルギ	操作量のエネルギ
	摩擦補償なし	摩擦補償あり
PID	2.3180	0.8185
PD	2.3041	0.8176
MB	2.1575	0.6999
LQ	2.4736	1.2459
PFC	2.2600	0.9912

ンになっていることが考えられる.

4. 結言

本報告では、一軸サーボ系の摩擦モデリング と位置決め制御をおこなった.まず、実験装置の 摩擦特性を測定し、一般化動摩擦モデルに基づ き摩擦を同定した.次に、PD、PID、MB、LQ および PFC の各制御則を設計・実装し、それら の追従特性の違いと出力を、摩擦補償の有無と ともに実験的に比較・検討した.その結果、い ずれの制御則においても摩擦補償の効果は確認 できた.また、PID、LQ、PFC が良好な追従 性能を示すことが確認できた.さらに、LQ と PFC とでは PFC の方がコントローラの出力エ ネルギーを抑えながら追従性能を向上させてい ることを確認した.今後は、無駄時間を考慮し た制御則の設計やLQ と PFC 使用時の発振の 抑制、PFC の改良等を検討していく.

参考文献

 Evangelos G. Papadopoulos and Georgios C. Chasparis, "Analysis and Model-Based Control of Servomechanisms With Friction", ASME Journal of Dynamic Systems, and Control, vol. 126, pp. 911–915, 2004.