ロックインアンプによる微弱光分光測定

The Spectropic Measurement for Low Level Light Using Lock-in Amplifier

〇今井 太一,神田 和也

OTaichi Imai, Kazuya Kanda

鶴岡工業高等専門学校

Tsuruoka National College of Technology

キーワード: 近赤外光(near-infrafed), ロックインアンプ(Lock-in Amplifier), 吸光度スペクトル(absorbance spectrum)

連絡先: 997-8511 山形県鶴岡市井岡字沢田104 Tel: (0235)25-9095 Fax: (0235)24-1840

E-mail: kanda@tsuruoka-nct.ac.jp

1. はじめに

近年,固体,液体,気体,粉体,繊維等,様々な 状態にある試料を非破壊,無侵襲,無接触で分析 する方法として近赤外分光法が注目されている.

近赤外分光法を用いた分析は,食品の成分分析 にも利用されている.しかし,従来の近赤外分光 法を利用した食品の成分分析装置では,試料を薄 いペースト状にして分析を行うサンプリング検査 には適しているが,全品検査を目的に,試料に手 を加えずに分析を行う検査には適していない.試 料を加工しない場合,ペースト状にした試料に比 ベ厚く,内部に光が吸収され透過光も微弱なもの となり雑音に埋もれてしまうため,透過光のみを 検出することが難しくなる.

そこで, 雑音に埋もれた微弱な信号を検出する ことに適したロックインアンプを用いて, 測定を 行い, 得られたスペクトルから試料の成分分析を 行うことを目的とした. 本研究では、測定方法として、光源の出力光が確 実に試料を通り、信頼性の高い吸光度スペクトル を得られる利点から透過型を用いることとし、近 赤外光を対象物に照射し透過する微弱光を分光測 定するためのシステムの構築を行った、構築した システムにおいて、固形試料を測定し得られたス ペクトルを参照データと比較し、吸光度スペクト ルを算出した、それにより得られた結果から、構 築した微弱光分光システムの評価結果を報告する.

2. 近赤外分光法

2.1 原理

近赤外分光法は、物質の分子による近赤外光の 吸収あるいは発光に基づく分光法であり、その波 長域には明確な定義はないが、本研究では一般的 に言われている、780~2500[nm]を近赤外域と定義 する.

- 1 -

分光法により分子の吸収スペクトルの特長点が 現れるのは、分子の励起によるものであり、物質 に対して光を照射すると、物質を構成する分子は、 Δ*E*[J]の光エネルギーを吸収し、元のエネルギー 準位*E*1より高いエネルギー準位*E*2に遷移する.こ の現象を分子の励起と呼び、この時に分子が吸収 する光エネルギーΔ*E*は(1)式で与えられる¹⁾.

$$\Delta E = E_2 - E_1 = h\nu \tag{1}$$

hはプランク定数であり、 ν は光の周波数である.

分子のエネルギーバンドは分子毎に固有のもので あるため、吸収される光の周波数も分子毎に固有 のものであるといえる.よって、物質を構成する 分子に対応した吸収が周波数あるいは波長毎にス ペクトルとして現れる²⁾.

2.2 特色

近赤外分光法の特色についてまとめると以下の ことがあげられる¹⁾.

(1) 試料を損傷することがほとんどないため、非 破壊、無侵襲な分光法である

(2) 固体,粉体,繊維,フィルム,ペースト,液体, 溶液,気体など様々な状態にある試料に適用する ことができる

(3) 赤外光に比べ,近赤外光では水の吸収強度が かなり弱くなるので,水溶液での研究や分析がは るかに容易に行える

(4) 多成分の同時分析が可能である

(5) 化学薬品を必要としないため, 無公害分析で あるといえる

3. 測定システム

3.1 システムの概要

微弱光分光測定システムの概要をFig.1に示す.

Fig. 2 Outline of Measurement Part

主に, ハロゲンランプ, モノクロメータ, ホトダ イオード, ライトチョッパから成る測定部, ライト チョッパ, ホトダイオードの信号を処理するロック インアンプを要とする信号処理部, ロックインア ンプのデータを通信処理するPCのデータ通信処 理部で構成される.

3.2 測定部

測定部の概要をFig.2に示し,信号の流れを説明 する.光源から出射した光は,集光レンズを通り,ラ イトチョッパでチョッピングされる.そして,光は集 光レンズを通り試料に照射され,微弱な透過光を モノクロメータで波長毎の単色光として取り出し, ホトダイオードで電圧に変換する.これによって得 られた電圧の測定値をロックインアンプで処理す る.ロックインアンプによる信号処理は後に述べる.

3.2.1 ライトチョッパ

信号処理部で利用するロックインアンプは,測 定信号と参照信号の位相と周波数が等しいとき, 最大の直流値が得られる.そこで,2つの信号の周 波数を等しくするためにライトチョッパ(5584A, エヌエフ回路設計ブロック社製)を利用する.

ライトチョッパは制御部とチョッパ部に分かれて

おり,制御部で設定さした周波数がロックインアン プの参照信号になり,その周波数に同期したチョッ パ部で光をチョッピングする.チョッピングした光 は,同期した周波数で試料を透過しホトダイオー ドで電圧に変換される.以上のようにロックイン アンプに同じ周波数の測定信号と参照信号が入力 される.

3.2.2 モノクロメータ

光を波長毎に分けたものがスペクトルであり,ス ペクトルから一定の波長範囲で取り出された光を 単色光と呼ぶ.スペクトルを得るための装置が分光 器で,その中でも単色光を得ることを目的としたも のがモノクロメータである.

モノクロメータには回折格子と呼ばれる,種々 の波長が混ざった光を波長毎にわけることができ る光学素子が利用されている.

さまざまな波長が混ざった光が回折格子に入射 すると、それぞれの波長によって決まった角度に 回折が起きるため、回折格子から回折する方向が わかれば、その光の波長を特定でき、任意の波長 の光を取り出すことができる.

今回使用したモノクロメータ(SPG-120IR, 島 津製作所社製)は凹面グレーティングと、コリメー ティングミラー、フォーカシングミラーとよばれ る2枚の凹両鏡から構成されている.

3.2.3 ホトダイオード

微弱光を電圧値として測定するために光電素子 とプリアンプを内蔵したホトダイオードホルダ (AT-120PD,島津製作所社製)を用いる.ただし, モノクロメータの接続具に対応したホトダイオー ドホルダの出力端子が,極数が6の多極丸型コネク タであるのに対し,ロックインアンプの入力端子 がBNCコネクタだった.そのため,ホトダイオー ドホルダに内蔵されたプリアンプを取り外し,検 出部のシリコンホトダイオード(S1337-1010BQ, 浜松ホトニクス製)のみ利用した.

シリコンホトダイオードの半値幅は500~1050[nm] である.また,暗電流が最大で0.2[nA]で,端子間容 量が1100[pF]で低雑音という特徴を持つため,目標 である微弱光の測定には適しているものと言える.

3.3 信号処理部

微弱光分光測定を行うために, 雑音に埋もれた 微弱光の検出に適したロックインアンプ(多機能 ディジタルロックインアンプLI5640, エヌエフ回 路設計ブロック社製)を利用した. ロックインアン プでは, ホトダイオードより得られた測定信号と, ライトチョッパより得られた参照信号の2つの信号 の位相差を0[°]にし, 同じ周波数を持たせ, 周波 数変換技術を用いて信号を処理し, 交流分を除去 するローパスフィルタを通過させることで, 雑音 に埋もれた目的の信号のみを直流分の最大値とし て取り出すことができる. ロックインアンプの原 理については, 次の章にて述べる.

- 3.4 データ通信処理部

ロックインアンプのデータの取得方法として, Agilent Technologies社製のE5810 LAN-GPIBゲー トウェイを利用する.

Agilent VEE Pro を用いてプログラミングを行い, PCからロックインアンプにコマンドを送信する ことで,位相のオフセットを自動化した後,PCに データを送信するように設定し,簡単に測定値を PCに取り込めるようにした.なお,位相のオフ セットとは,モノクロメータで波長を変化させる 毎に位相が変化するため,ロックインアンプの出 力を最大値で得るために,手動で位相差を0°にす る作業である: 4. ロックインアンプ

4.1 雑音除去

微弱な信号を検出する場合, 雑音の影響が大き く関係するため, 雑音を取り除く必要がある. 雑 音にも, 広い周波数成分を含んだ白色雑音や, 特 定の周波数を持つ線スペクトル雑音等, 様々な雑 音がある.

雑音除去方法としては,バンドパスフィルタを 使うことが挙げられるが,その場合,フィルタに 使用している素子が変動すると中心周波数が変動 してしまい,信号の振幅に影響を与えてしまうた め,微弱な信号を検出するには適していない.

そこで、ロックインアンプによる周波数変換技術 が利用される.周波数変換技術とは、位相検波器 を利用し、雑音に埋もれた信号の中から、目的の微 弱な信号を取り出せるというものであり、PSD(位 相検波器)と呼ばれる乗算器により処理される³). ロックインアンプにおける雑音除去の最大のメリッ トは、得られる信号が直流であるため、帯域制限 のフィルタがローパスフィルタのみですむことで ある.ローパスフィルタの場合、使用している素 子が変動してもフィルタの遮断周波数が変動する だけで、直流信号の値には影響しないためである. つまり、ローパスフィルタの遮断周波数はいくら でも低くすることができ、周波数帯域幅をいくら でも狭めることが可能になる.ただし、遮断周波 数が低くなるほど、応答時間は長くなる³).

4.2 原理

ロックインアンプの内部処理の様子をFig.3に示 す.ロックインアンプには測定信号の他に参照信 号が必要になる.この2つの信号に全く同じ周波 数と位相を持たせ,PSDの出力が内蔵されたロー パスフィルタを通過したとき,最大の直流分のみ を得ることができる.

Fig. 3 Internal Processing of Lock-in Amplifier

Fig. 4 Relation of PSD Output and Phase Lag

しかし、2つの信号の周波数が異なる場合だと、 直流分がPSDから出力されないため、ローパスフィ ルタを通過させても出力が得られなくなる.この ことをFig.3および(2)式を用いて説明する⁴⁾.

$$cos(\omega t + \alpha) \times sin(\omega t + \beta)$$
$$= \frac{cos(\beta - \alpha) - cos(2\omega t + \alpha + \beta)}{2}$$
(2)

(2)式は、2つの信号に同じ周波数と異なる位相 を持たせ、乗算した結果である.このとき、2つの 信号の位相も同じにすると、最大の直流分と2倍 の周波数の交流分が得ることができる.

Fig.3より、ロックインアンプにはローパスフィ ルタが内蔵されているため、PSDの出力を通過さ せると交流成分は除去され、直流分だけ出力する.

また, Fig.4で示すように, 2つの信号の位相差に よってPSDの出力は変化し, 位相差が0°の場合に は正弦波の出力は全て正の値になるが, 位相差が 180°の場合では出力は全て負の値になる. さらに ローパスフィルタにPSD出力を通過させると, 位 相差0°では正の直流分, 位相差90°では出力が0. 位相差180°では負の直流分を出力する.

このように周波数変換には位相の調整が欠かせ ないため、ロックインアンプには、参照信号の経 路に移相器があり、それにより位相調整を行うこ とができる.

以上のことから、ロックインアンプでは2つの等 しい周波数と位相を持つ信号からであれば、雑音 を除去した目的の信号の直流分のみが取り出せる ということが分かる.

5. 実験

5.1 装置

前述の微弱光分光測定システムを用いて実験を 行った. 試料には,成分がほぼ均一に分布しており, 参照データと同じ条件である,厚さが約13[mm]の 固形チーズと厚さが約10[mm]のハムを用いた.

また,近赤外域は780[nm]からと定義したが,モ ノクロメータの波長範囲が700[nm]からだったた め,測定波長域はホトダイオードの波長範囲も考 慮して700~1100[nm]とした.

なお,島津製作所のデモ用測定システムによる データを参照データとする.

5.2 方法

Dark(暗環境)スペクトル, Reference(光源)スペ クトル, Signal(試料)スペクトルの取得を行い, 測 定したスペクトルより(3)式より透過率T[%]を算 出し, (4)式より吸光度Aを算出する.

$$T = \frac{S - D}{R - D} \times 100 \tag{3}$$

なお、D:Dark, R:Reference, S:Signalとする.

$$A = \log \frac{100}{T} \tag{4}$$

Fig. 5 Signal Spectrum of Solid Cheese

Fig. 7 Absorbance Spectrum

5.3 結果

Fig.5, Fig.6に固形チーズとハムの測定データと 参照データのSignal(試料)スペクトルの比較を示 す.また, Fig.7に測定データより算出した吸光度 スペクトルの比較を示す.

5.4 考察

Fig.5とFig.6より, 測定したデータと参照データ のスペクトルを比較すると, ほぼ同じピーク値を 持つため, 今回構築した測定システムが確からし いことを確認した.また, 島津製作所の測定装置 の出力のゲインが最大で53.9[dB]であったが, 今 回の実験で使用したロックインアンプのゲインは 54[dB]に設定した.

また,固形チーズの厚さ別の吸光度スペクトル をFig.8に示す.固形チーズの厚さが20[mm]の場合 において,ゲインを74[dB]に設定することで,Fig.8 のような吸光度が得られた.Fig.8においてより正 確なスペクトルを得るためにはより大きな時定数 に設定する必要があるが,応答時間が遅くなるこ とを考慮しなければならない.

Fig.7より,吸光度のピークは固形チーズとハム のどちらも970[nm]付近に現れ,乳製品の脂肪の吸 光度スペクトルと一致した.Table1の100[g]中の成 分表より,ハムの方が脂肪分が少なく,固形チー ズの厚さが13[mm]であったのに対し,ハムの厚さ は10[mm]であったため,固形チーズの方が吸光度 は大きくなったと考えられる.

たんぱく質においては,吸光度のピークが現れる 波長が1100[nm]よりも大きいため,今回使用した ホトダイオードでは測定ができなかった.

6. おわりに

ロックインアンプ, ハロゲンランプ, ライトチョッ パ, モノクロメータ, ホトダイオードによって構 築された微弱光分光測定システムにおいて, 試料 のスペクトル測定を行い, 参照データと同様のス ペクトルを示す測定結果を得た. また, 吸光度ス ペクトルを算出することで脂肪分の特定が可能で あると考えられる.

Table 1 100[g] in the Ingredient List

	水分[g]	脂肪[g]	たんぱく質[g]	炭水化物[g]	灰分[g]
チーズ	45.0	26.0	22.7	1.3	5.0
ハム	65.0	13.9	16.5	1.3	3.3

今後の課題は、さらに厚い試料など様々な試料 で測定を行い、スペクトルを得て解析を行うこと と、吸光度スペクトルより2次微分スペクトルを 算出し参考スペクトルと比較することである.ま た、波長範囲が1100[nm]以上のホトダイオードを 用いて、1100[nm]より高い波長域でのスペクトル の測定、解析が今後の課題だ.

参考文献

- 1) 尾崎 幸洋・河田 聡 編:近赤外分光法,日本分光学会 測定法シリーズ(1996)
- 近藤 みゆき:近赤外分光法による食品の化学 的分析,名古屋文理大学紀要 第7号 (2007)
- LI5640 取扱説明書,エヌエフ回路設計ブロ ック
- 4) 遠坂 俊昭:計測のためのフィルタ回路設計,
 CQ出版 (1998)

- 6 -