計測自動制御学会東北支部 第262回研究集会 資料番号 262·10

コネクタの緩みによるその高周波等価回路の変化

Effect of loose contact on its high-frequency equivalent circuit

○松田和樹, 林優一, 水木敬明, 曽根秀昭

OMatsuda KAZUKI, Yu-ichi HAYASHI, Takaaki MIZUKI, Hideaki SONE

東北大学 (Tohoku University)

キーワード: 電磁両立性(Electromagnetic Compatibility), 接触不良(Contact Failure)

〒980-8578 宮城県仙台市青葉区荒巻字青葉6番3号 東北大学サイバーサイエンスセンター・本館・曽根・水木研究室

松田和樹, Tel: (022)795-6094, Fax: (022)795-6096, E-mail: b0im4025@s.tohoku.ac.jp

1.はじめに

電子機器が動作する際に生じる放射電磁 波によって、他の電子機器が電磁的干渉によ り影響を受けることが問題となっている。こ れらの問題に対しては、製品に対し規格を設 け試験を行うことで対策が行われている。ま た、近年の電子機器の動作速度の高速化に伴 い、高周波領域における放射電磁波の規制も 求められている。規格試験は、機器が使用さ れる環境を模擬するため複数の機器を相互 接続させた状態で行うものや、機器を単一で 動作させ試験を行うものなど、規格により 様々な環境で試験が行われる。規格試験の際 の環境と、実際に機器が使用される環境を比 較すると、相互接続部での差異が考えられる。 規格試験時には、機器同士の接続部分におい てトルクレンチ等を用いて規定のトルクで 管理することが可能となる。しかし、実際に 機器が使用される際には、機器の利用者が接

続部を手締めすることが多く、接続部が規定 トルクで管理されていない恐れがある。この ように相互接続部分のトルク管理が不十分 な場合、トルク管理された接続部に比べ機器 から生じる放射電磁波が増大することが報 告されている¹⁾。こうした報告は、規格試験 に合格した電子機器であっても、実際に利用 される際には規制を満たしていない可能性 があることを示している。この問題に対して は、接続部のコネクタに求められる接触要件 の提案や利用者への注意喚起等の観点から、 接触部におけるコネクタのトルク管理が不 十分な場合の放射電磁波の増大に関する定 量的な評価が重要である。例えば、シミュレ ーション等によりトルク管理が不十分なコ ネクタからの放射電磁波の増大を予測する ことが出来れば、機器利用時に相互接続部の 接触性能が劣化し放射電磁波が増大した場

合を事前に想定して機器を設計することが 可能となる。こうした予測を行うためには、 相互接続部のコネクタの等価回路を与える ことが効果的であると考えられる。

そこで、本報告では、トルク管理が不十分 なコネクタからの放射電磁波の増大に関す る定量的評価を行うため、手締めを行った際 の相互接続部のコネクタの等価回路を明ら かにする。

なお、本報告では、相互接続部における接 触面の定量的評価を行う基礎的検討として、 高周波信号の伝送に頻繁に使用される SMA コネクタを測定対象とし測定を行う。

2.測定

相互接続部におけるコネクタの高周波素子 を明らかにするために Common-Mode⁴⁾電流 (以下 CM 電流)の測定と Time Domain Reflectometry²⁾(以下 TDR)の測定の二種類 の測定を行う。前者の測定では、コネクタの 緩みにより発生する放射電磁波を観察する ための測定として、放射電磁波の主要因の一 つとなる CM 電流の測定を行う。後者の測定 では、コネクタの緩みにより生じる高周波素 子の推測を行うための測定を行う。

また、接触部での高周波素子と接触部分を 原因として発生する CM 電流の対応を観察 するため、二つの実験を並行して行った。

2.1 CM 電流測定

図1にコネクタの緩みが放射電磁波に与 える影響を測定するための測定環境を示す。 測定環境は、測定対象と計測機器を電気的に 分離するための2枚の銅板、CM 電流を測定 する電流プローブ及びTG 付きスペクトラム アナライザー(ADVANTEST R3131A)によ り構成される。2枚の銅板にコネクタ付きセ

ミリジットケーブルを接続し、図1中の左端 コネクタは規定トルクである 0.65N・m のト ルクで締め付けた。同図の右端のコネクタで は手締めを模擬するためにコネクタを 120° 回転させ緩みを生じさせた。図2にその様子 を示す。本稿では、規定トルクで締め付けら れた位置からコネクタを120°回転させた位 置を手締めによって接続された状態とする。 コネクタを手締めによって接続させた状態 において、左端から 107dBµV の信号を励振 させ、電流プローブを用いて CM 電流を観測 した。また、CM 電流測定と後述の TDR 測 定の対応関係を観察するため、二つの測定を 並行して行った。測定は 10 回行い、測定毎 にコネクタの接触状態を同様に保ち、図1と 図4(後述)の測定系の測定機器の交替を施 し測定を行った。

図3に CM 電流の測定結果を示す。10 回 の測定に対応するいずれの波形も同様の概 形を示しているが、最大 10dB 程度のレベル 差があることが確認出来る。

図1. CM電流測定環境

図2 手締めを模擬したコネクタの緩み

2.2. TDR 測定

TDR 測定では、被測定物に対してステップ 波を入力し、被測定物からの反射波を観測す ることで相互接続部での高周波素子の推定 を行う。図4にTDR 測定の測定環境を示す。 CM 電流測定と同様の被測定系に加え、入射 波を生成するためのパルスジェネレータ

(PG)、反射波を分離させるための方向性結 合器(Mini-Circuits,ZFDC-20-5-S)と35 dB 増幅させるためのアンプ(COSMOWAVE, LNA270WS)、反射波形を測定するオシロス コープ(Agilent MSO6104A)により構成され る。測定を行う際には、CM 電流測定と同様 に手締めを模擬するためコネクタを 120 度 緩めた状態で、PG より電圧 1.5V、立ち上が り時間 1.0ns のステップ波を入力し反射波を 測定した。本測定では、誘電体としてテフロ ンを使用した同軸線路を用いているため、空 間分解能は 10 cm である。被測定系がセミリ ジットケーブルとコネクタからなる比較的 単純な構成でありセミリジットケーブルの インピーダンスは既知であることから、上述 の空間分解能でも十分な効果が挙げられる と考えられる。また、入射波と反射波を分離 するため、方向性結合器と被測定系の間に1 m の同軸線路を設けた。2.1 節で既述した通 り、測定は 10 回行い CM 測定と並行して行 った。

図5に TDR 測定結果を示す。波形の立ち 上がり付近が緩んだコネクタの位置に該当 する。全ての波形でコネクタの位置において ピークが存在することを確認できる。また、 図5の実線、破線で示された各結果は図3の 結果と対応している。

図4 TDR 測定環境

3. 考察

3.1. 接触面の等価回路

回路を構成する基本要素である抵抗 R , インダクタ L 、 コンデンサ C に対し TDR 測定を行った際の反射波の応答を図6 に示す 2),3)。図5の実線で示される波形は、 立ち上がりと立ち下りを持ちピークの前後 でほぼ等しい電位となっており、図6(b)と同 様の応答を示している。このことより被測定 部を等価回路を用いて表現した場合、その等 価回路にインダクタンス L が存在すると考 えられる。また、同図の破線で示される波形 は、図6(a)と同図(b)の双方の特徴を表して おり、実線同様にピークを持ち、ピークの前 後の電位が異なっている。このことは、イン ダクタンス L と抵抗 R の直列成分が存在 することを示しており、被測定部を等価回路 で表した場合、その等価回路にインダクタン ス L と抵抗 R の直列成分が存在すると考 えられる。

ここで同軸ケーブルと手締めを行ったコ ネクタ部分を等価回路を用いて表現するこ とを考える。図7(a)に示すように、同軸ケー ブル部分はラダー回路で示すことができ、同 図の四角で囲まれた部分がコネクタの接触 面となる。接触面においてインダクタンス L と抵抗 R の直列成分が観測されたことから、 コネクタの接触面は図7(b)で示すことが出 来ると考えられる。また、接触状態により抵 抗 R の値が変化し、図5の実線と破線で示 される応答の変化が起きたと考えられる。

図6 反射波形の概要

図7の回路図が示す物理的意味について 考察を行う。手締めを行うことにより接続部 では、接触している面同士において接触面の 偏りや接触抵抗が生じると考えられる。図8 (a)に示すような接触面の偏りが生じた場合、 外側導体を流れる電流は、接触面において図 8(b)に示すようなインダクタンス L の要因 となる半ループの電流経路を形成する。この 半ループにより等価回路には、インダクタン ス L が含まれると考えられる。また、接触 面の接触状態により接触抵抗が異なり、接触 抵抗が大きい場合には、図7(b)に示すように 等価回路に抵抗 R が含まれると考えられる。

(a) コネクタ周辺の等価回路表現

(b) コネクタ接触面の等価回路表現

図7 接触面の等価回路表現

(b) 接触面での電流路

図8 接触面での高周波素子

3.2. CM 電流のレベル差

図3のCM 電流測定結果と図5のTDR 測 定結果を比較すると、各図の破線で示された 波形だけが実線で示された他の波形とは異 なる応答を示していることがわかる。TDR 測定結果を考慮すると、実線と破線では抵抗 Rの存在に差異が見られる。抵抗 R により 接触面でのインピーダンスが増大すること で接触面でのインピーダンスミスマッチが 増大し、CM 電流が増大したものと考えられ る。

4. まとめ

本報告では、電子機器の相互接続部での利 用者の手締めによる放射電磁波の増大を予 測し、電磁両立性を保った製品の効率的な製 造のために設計段階でシミュレーションを 行うことを想定し、シミュレーションに用い るための等価回路を与えることに取り組ん だ。その結果として、手締めされたトルク管 理がなされていないコネクタの相互接続部 を等価回路で表現した場合、図7に示すよう な等価回路で表現した場合、図7に示すよう な等価回路で表現出来ることを明らかにし た。本報告の応用例として、等価回路を用い て相互接続部における接触面でのインピー ダンス不整合を計算することにより、利用者 が手締めを行った際の放射電磁波の増大を 予測することが可能となると考えられる。

5. 参考文献

 【1】 林優一,水木敬明,曽根秀昭, "コネクタの緩みが放射 電磁波に与える影響に関する基礎的検討," 電子情報通信学 会,2010 ソサイエティ大会, CS-6-3, 2010.

[2] Hewlett Packard, "Time Domain Reflectometry," Application Note 1304-2, 1998

 [3] Richard E. matick, "Transmission Lines For Digital And Communication Networks," IEEE Press, 1995, pp.158-173

[4] C. R. Paul and D. R. Bush, "Radiated emissions from common-mode currents," in Proc. 1987 *IEEE Int. Symp. Electromag. Compat.*, Atlanta, GA, Sept. 1987, IEEE Electromag. Compat. Soc., pp 197-203