計測自動制御学会東北支部 第 265 回研究集会(2011.06.28)

資料番号 265-16

マスタ・スレーブ機構のための

柔軟物検出と柔軟さ提示

Softness detection and display of grasping objects for master-slave system

鈴木佑太 福田 眞

Yuuta Suzuki Makoto Fukuda

弘前大学

Hirosaki University

キーワード:マスタ・スレーブ機構(Master-slave system),バイラテラル制御(Bilateral control),柔軟さ検出(Softness detection),柔軟さ提示 (Softness display), MR 流体(Magneto rheological fluid),力覚提示(Force display), PVDF フィルム(Polyvinylidene fluoride film)

連絡先:〒036-8561 弘前市文京町3番地 弘前大学大学院 理工学研究科 福田研究室 福田 眞, Tel.:(0172)39-3678, Fax.:(0172)39-3678, E-mail: fukuda@cc.hirosaki-u.ac.jp

1.はじめに

バイラテラル制御を用いたマスタ・スレーブ 型遠隔操作システムの研究は古くから研究さ れている^{1,2)}.近年,低侵襲かつ遠隔操作可能 な点から,手術用ロボットが医療用として試用 されてきている³⁾.このような応用において確 度の高い操作を行うためには,操作者の経験に 基づく高い技能が必要となる.手術用ロボット では,主に映像による位置情報に基づいて操作 されるが,操作性・作業品質の向上を図るため には位置制御と同時に力覚提示を同時に行う ことが望まれる.特に,医療用では,操作機構 への反力と同時に把持対象物の柔らかさを操 作者に提示することが望まれている4.

これまでの力覚提示では,把持動作時の把持 力を提示する方法が多く,把持対象物の硬さ, 柔らかさを提示することはあまりなかった.

そこで,本研究では把持力と同時に,把持対 象物の柔らかさを提示することをねらいとし ている⁵、本報告では,PVDF(Polyvinylidene fluoride)フィルムと MR(Magneto Rheological)流体を用いた柔軟さ検出とその提 示機構を検討したので,このMR 流体とPVDF フィルムを用いたマスタ・スレープ機構につい て述べる.

2.柔軟さの検出および提示原理

2.1 柔軟さの検出

PVDF フィルムは,圧電型の起電力を発生す るフィルムで,フィルムに加える力と面積に依 存して電圧を発生する.ただし,出力検出のた めの負荷抵抗をつなぐことにより,電荷が流れ 出るため,パルス状の波形となる.また,パル ス幅は,加圧時間に依存して長くなる.このた め,波形を測定することにより,押し付け力と, 測定対象物との接触面積を求めることができ る.

さらに,2枚のPVDFフィルムを予め剛性の わかっている柔軟材を挟み込み,両者からの信 号を測定することにより,対象物の柔らかさ (剛性)を測定することが可能である.

2.2 柔軟さの提示

柔軟さの提示には, MR 流体を用いる. MR 流体は,磁場によりせん断力が変化する性質を 有している.このため,通過する磁束密度を変 化させることにより, MR 磁性流体内に設置し た板の動かし易さを変えることができる⁶⁰.把 持動作時に,磁束を変化させることにより, MR 磁性流体内の板の動きで,柔軟さ(硬さ) を提示させる.

2.3 マスタ・スレープ機構およびシス テム構成

マスタ,スレーブともに操作および対象物把 持機構として,駆動にDCモータ,位置検出に はエンコーダを使用した.スレーブ側で対象物 の柔らかさを検出するためのセンサには PVDFフィルムを使用する.また,操作器であ るマスタ側で柔軟さを提示するために磁束密 度によってせん断応力を変化させることがで きる MR 流体を使用する.

制御はデジタル制御とし,PC を介して行う. PVDF フィルムの出力はマイコン(Arduino Uno,Arduino製)のA/D 変換器で取込む.エ ンコーダ付のDC モータは,位置制御型のドラ イバ(iMCs01,iXs Research Corp 製)で制御す る.Fig.1 は実験装置に適用したバイラテラル 制御系のブロック図である.力逆送型バイラテ ラル制御は,マスタとスレーブ間の相対変位か らスレーブの位置決め制御を行う.一方で, PVDF フィルムにより,スレーブに加わる力を 検出してそれをマスタで再生する方式である.

Fig.1 The block diagram of force rehlecting type bilateral control

3. PVDF フィルムの特性

3.1 球の落下実験

まず PVDF フィルムの出力特性を明らかに するため,アルミ板(40 mm × 20 mm × 5 mm)に PVDF フィルム(DT1-028k,東京セン サ製)を貼り、硬さの異なる部材を様々な高さか ら落下させた.

Fig.2 The PVDF output by steel ball impact

Fig. 3 The PVDF output by rubber ball impact

Fig. 4 The relation of impact between force and PVDF output

結果を Fig. 2, Fig. 3 に示す. 硬い部材であるスチールボールを落下させた場合,短い時間

(0.5 ms)の出力となり,ゴム製ボールは長い 時間(5 ms)の出力が得られた.

これから,落下時の運動量と,力積の関係から,フィルムに加わる力と出力との関係を見てみると,Fig.4のようになる.加わる力に比例した電圧が出力されることがわかる.

3.2 柔軟さ検出センサの構成

次に本研究で用いるセンサの概略図を Fig.5 に示す.この基本的な考え方は曽根らによって 提案されている⁷⁾.2枚のアルミ板(40 mm × 20 mm ×5 mm)の上にシリコンシート(12 mm ×12 mm ×1 mm)と2枚のガラス板(12 mm ×9 mm ×1 mm)を積層し, PVDF フィ ルムの1枚は2枚のアルミ板の間,もう1枚は アルミ板とシリコンシートの間に設置しそれ ぞれのセンサに加わる力を測定する.

Fig. 5 Structure of the sensor

Fig. 6 The figure of measurement theory

Fig.6にセンサの測定原理を示す.測定対象のヤング率を推定する方法は以下に示すとおり.

A_a: F₁が加わる部分の面積 [m²]A_b: F₂が加わる部分の面積 [m²]l₁: 測定対象の厚さ [m]l₂: センサ測定部位の厚さ [m]E₁: 測定対象のヤング率 [Pa]E₂: 中央のシリコンゴムのヤング率 [Pa]Δl₁: A_aに対する測定対象物の変位量 [m]Δl₂: 測定対象物に対するA_b部分の変位量 [m]

シリコンの両脇の部材は,シリコンと比ベヤ ング率が非常に大きい場合,剛体と見なすこと ができる.下部のPVDFフィルムで計測するこ とができるセンサ全体に加わる力F1はフック の法則から式(1)で表される.

$$F_1 = \frac{E_1 \cdot A_a \cdot \Delta l_1}{l_1} \tag{1}$$

同様に上部の PVDF フィルムで検出できる シリコンに加わる力 F2 は式(2)で表すことがで きる.

$$F_2 = \frac{E_2 \cdot A_b \cdot \Delta l_2}{l_2} = \frac{E_1 \cdot A_b \cdot (\Delta l_1 - \Delta l_2)}{l_1}$$
(2)

式(1),(2)を用いて上部の PVDF フィルムに 加わる力 F2 と下部の PVDF フィルムに加わる 力 F1+F2 の比を取ると式(3)が導かれる.

$$\frac{F_2}{F_1 + F_2} = \frac{A_b / A_a}{1 + l_2 \cdot E_1 / l_1 \cdot E_2 + A_b / A_a}$$
(3)

さらにそれぞれの PVDF フィルムの出力 V1, V2が F2, F1+F2に比例していることから式(4) が成り立つ.

$$\frac{V_1}{V_2} = \frac{F_2}{F_1 + F_2}$$
(4)

3.3 センサ実験結果

実際にセンサが測定対象物のヤング率を計測す ることができるのかを調べるために,センサに5 mm 厚のアルミ板(ヤング率:69 GPa),1 mm 厚でセンサに用いられているものと同一のシ リコンシート(シリコンシート1),とそれと別 の1 mm 厚のシリコンシート(シリコンシート 2,ヤング率:0.16 MPa)を用い任意の力を加え る実験をそれぞれ3回行った.変数kを式(5)

$$k = \frac{l_2 \cdot E_1}{l_1 \cdot E_2} \tag{5}$$

とし,式(3)から横軸をk,縦軸を上部と下部 のPVDF フィルムの出力比である V1/V2 にと した場合の理論値とアルミ板,2種類のシリコ ンシートを押し付けた場合の実測値を Fig.7 に 示す.中央のシリコンシートには一般的なシリ コンシート(ヤング率 0.6 MPa)を用いた.

Fig.7 The theoretical curve and experimental values

Fig. 7 よりセンサに使用されているシリコン 部材より硬いアルミ板の場合は実測値が理論 値よりも大きくなっていることがわかる.また 2 種類のシリコンシートの場合は理論値に近づ いていると言える.実験結果が理論値よりも大 きくなっている原因は,シリコン部材が両脇の 部材との厚さが不均一であること,測定対象物 が硬すぎる場合センサに垂直応力以外にせん 断応力も加わり上部のPVDFフィルムの出力 が大きくなっているためと考えられる.

4.MR 流体の特性

4.1 実験装置

MR 流体の磁束密度に対するせん断応力の関 係を明らかにするため次の実験装置を作製し た.アルミ板に溝(15 mm × 60 mm × 15 mm)を設けそこにMR流体を高さ10 mmまで 満たす.容器の下部にマイクロメータヘッドで 位置調節が可能なアルミ板を設け, 15 mmの 磁石2個を溝に沿って直線に配置する.マイク ロメータヘッドにより磁石とMR流体との距 離を調節することでMR流体にかかる磁場を 変化させMR流体の粘度を変化させた.溝にそ ってアルミのバーをフォースゲージを取り付 けた一軸ステージで動作させ,MR流体のせん 断力を測定した.

Fig. 8 Experimental setup of MR fluid

4.2 磁石の磁束密度

実験に使用した磁石の磁束密度をガウスメ ータ(東陽テクニカ 425 Gaussmeter)を用い て測定した.はじめに磁石1個の中心から高さ 0,1,3,5,10mmの地点の磁束密度を測定 し,次に磁石を2個直列に配置しその接点上空 での磁束密度を同様に測定した.実験結果を Fig.9, Fig. 10に示す.

Fig. 10 Magnetic flux density of the edge of magnet

磁石の中心部と端部では 0.1 T ほど磁束密度 が異なることが分かる . MR 流体に磁石を複数 個用いて磁束密度を加える場合 , 位置により磁 束密度が不均一になると考えられる .

4.3 磁束密度とせん断応力の関係

マイクロメータヘッドで磁石とMR流体を満 たした容器との距離を0~5 mm まで1 mm 間 隔で変化させ,そのときのMR流体を流動させ るためのせん断力の最大値をフォースゲージ を用いて測定した.次に,フォースゲージを搭 載した一軸ステージの速度を0.616,1.225, 1.84,2.46,4.63,6.21 mm/s と変化させ同 様にMR流体のせん断力の変化を測定した.

Fig. 11 Shear force change when the magnet distance change

Fig. 12 Shear force change when the stage velocity change

結果を Fig. 11, Fig. 12 に示す磁石との距離 と MR 流体が流動するために必要なせん断力 は線形の関係にあることがわかる.また速度変 化に対して MR 流体の流動に必要なせん断力 は磁石と MR 流体の距離が 2 mm から 5 mm の範囲では大きくは変化していないこと がわかる 磁石と MR 流体との距離が 0 mm , 1 mm の場合に測定結果に差が表れているの は, MR 流体が磁場の影響を強く受け流路全体 に盛り上がりアルミバーとの接触面積が不規 則に増大したためだと考えられる.このことか ら MR 流体のせん断力は加える磁場によって 決めることができると考えられる.

5.まとめ

本研究では柔軟物の検出と柔らかさ提示を 実現するため、PVDFフィルムとMR 流体の特 性測定実験を行い実験装置への適用を検討し た.PVDFフィルムは受ける力によって出力が 比例することを明らかにした.MR 流体のせん 断応力は加える磁束密度に線形に変化する.こ のことからマスタ・スレープ機構の柔軟さ検出 に PVDFフィルムを用い、また柔軟さの提示機 構としてMR 流体を用いることができると考 えられる.

今後, PVDF フィルムにより柔軟さの検出と MR磁性流体による柔軟さ提示機構をマスタ・ スレープ機構に組み込み, 柔軟さの提示システ ムを構成していく.

参考文献

- 戸田義継,町田和雄,岩田敏彰,川田政国: 宇宙用マスタ・スレーブ・マニピュレー タ・システムの開発,日本航空宇宙学会 誌,第35巻,406号,(1987.12), pp.546-553
- 2) 戸羽篤也,桑野晃希,バイラテラル方式
 による力覚制御技術,北海道工業試験場
 報告 No. 297, (1998)pp.23-30
- 3) 真島澄子,松島晧三,竹原直樹:サーボ マイクロマニピュレータを用いた生体組 織の硬さの測定とファジィ論的硬さの評 価,バイオメカニズム学会誌,Vol.15, No.1,(1991),pp42-48
- 4) 森川康英:外科医の求めるロボットハン

ド,バイオメカニズム学会誌, Vol.32, No3,(2008), pp130-133

- 5) 入江隆,藤田尚文,中西秀男,太田学: やわらかさ知覚のメカニズム,電子情報 通信学会論文誌A,Vol.J91-A,No.1, (2008), pp.162-171
- 6) 中山健二,古荘純次,山口雄平,小柳健
 ー: MR 流体を用いた新しい三次元触覚
 ディスプレイの提案,日本機械学会講演
 論文集 No.044-1,(2004), pp1-23
- 7)田中真美,曽根美紀子,長南征二,棚橋 善克:PVDFフィルムを用いた内視鏡装 着用生態硬さ測定センサの開発,日本機 械学会,情報・知能・精密機器部門講演 会講演論文集(07.3.19.20東京)No.7, pp303-306