計測自動制御学会東北支部第 266 回研究集会(2011.7.20) 資料番号 266-6

LPA を用いた傾斜センサの特性

The Characteristics of the Inclined Plane Sensor by LPA

○伊勢博規*,清水久記**,廣木富士男***,山本圭治郎[†]
 ○Hiroki Ise*, Hisaki Shimizu**, Fujio Hiroki***, Keijiro Yamamoto[†]

*一関高専専攻科 **一関高専 ***工学院大学 [†]神奈川工科大学 *Ichinoseki National College of Technology Advanced Engineering Course, **Ichinoseki National College of Technology, ***Kogakuin Univ., [†]Kanagawa Institute of Technology

- キーワード: 層流形比例素子(Laminar Proportional Amplifier), 傾斜(Inclined Plane), 圧力増幅(Pressure Amplifier), 周波数応答(Frequency Response)
 - 連絡先:〒021-8511 一関市萩荘字高梨 一関工業高等専門学校 制御情報工学科 清水久記
 Tel.:0191-24-4759,:E-mail:shimiz6@ichinoseki.ac.jp

1. 緒言

一般的な傾斜測定は電気計測で行っている場合 が多い.しかし、嫌火性の環境においては使用で きないことや高電圧の環境のもとではノイズの影 響が大きいなどの問題が生じており、このような 環境での計測では電気計測によらない傾斜測定方 法が望まれている.

本研究ではこれまで研究している層流形比例素 子(Laminar Proportional Amplifiers 以下 LPA と略す)を用いた流体式傾斜センサを考案し,その 有用性を検討した.この測定法は僅かな傾斜をノ ズル方式の近接センサで測定し,その出力を LPA で増幅する傾斜センサである.近接センサ,LPA および傾斜センサの出力特性実験,周波数応答実 験を行ったのでその結果を報告する.

2. 近接センサおよび LPA の形状と動作原理

2.1 近接センサの形状と動作原理

センサの構造を Fig.1 に示す. これまでの背圧

型近接センサとは異なり,二重管構造となってい ることに特徴がある.供給部から送られた流体は 外側の管を通り,ノズル先端より外部に噴出する が,先端部にフラッパなどがある場合,噴流が反 射し,中心部の管内に流れ込み圧力 Po を上昇さ せる.フラッパと先端との隙間 x が狭い場合 Po は高く,xが広い場合 Poは低くなる.この圧力は x に関係するため x の変化を圧力 Poにより読み取 ることが可能となる.このセンサは旋回流型セン サと呼ばれ,背圧型センサより間隔を広く測定で きるといわれている.

Fig.1 Schematic Diagram of Conventional Proximity Sensor

2.2 LPA の形状

Fig.2 に LPA の形状と各部寸法を示す. LPA は 主ノズル,スプリッタと左右に設けられた入力ポ ート,出力ポート,ベントおよびベントベーンで 構成されており,左右対称の形状である.この流 路パターンに厚みのあるカバープレートを上下に 挟み込むことで気密性を高める構造となっている.

Fig.2 Schematic Diagram of LPA

また素子の各部寸法は主ノズル幅 bs を基準と して図の右のように決定している.

2.3 LPA の動作原理

噴流の偏向の状況を Fig.3 に示す.(a)のように 供給ポートから噴出した流体は,左右の入力ポー トの圧力 *P_{iL}*,*P_{iR}の差が無い場合*,流体は真直ぐ

流れる.しかしながら(b)のように,一方の入力ポ ートに圧力差を生じさせると,流体は噴流偏向し, 左右に設けた出力ポートに圧力差を生ずることが できる.例えば,図のように *P*_{iR}が大であれば流 体は左側の出力ポートに偏向し *P*_{oL}が大となる.

これにより, 圧力増幅率 Gは次式で計算される.

$$G = \frac{\Delta P_o}{\Delta P_i} = \frac{P_{oR} - P_{oL}}{P_{iL} - P_{iR}} \tag{1}$$

この素子は流体式増幅器と呼ばれており、一般

に約10倍の増幅率を持っている.

一方, LPA は層流域で作動するため, 圧力ゲインが高く, パワー消費量が小さいなどの特徴がある. そのため特に微小圧力の増幅が可能であり, 様々な応用が期待されている素子である.

3. 試作近接センサおよび LPA の寸法

3.1 試作近接センサの寸法

今回試作したセンサの形状と各部寸法を Fig.4 に示す.

Fig.4 Trial Conventional Proximity Sensor

供給噴流は径 2.6mm と 1.8mm の形状より噴出 し、出力部径 1mm の円筒に回収される二重管構 造となっている。ノズルの径が小さいため、小面 積のフラッパ等で動作することが可能である.

3.2 試作 LPA の寸法

試作した LPA の寸法を Fig.5 に示す.

Fig.5 Trial LPA

今回用いた LPA は bs=0.375mm, 0.75mm の 2 種類であり,厚さは両方共 0.2mm のものを使用 した.特に傾斜測定にはアナログ量の検出に適す る bs=0.75mm の LPA を使用した.

3.3 傾斜センサの構成

近接センサに LPA を組み込んだ傾斜センサの

構成を Fig.6 に示す. 近接センサの出力部を LPA の入力ポートに接続した構成である. これにより, フラッパとの隙間 x は LPA を用いて増幅すること が可能である.

Fig.6 Inclined Plane Sensor

4. 実験方法および実験結果

実験方法および実験結果を近接センサの場合, 傾斜センサの場合,傾斜測定の場合に分けて説明 する.尚,使用流体は空気を用いた.

4.1 近接センサの出力特性実験結果

近接センサの出力特性実験装置を Fig.7 に示す. センサの供給部に流量計を接続し,出力部に U字 管マノメータを接続している.フラッパを取り付 けたマイクロメータをセンサの先端部に徐々に接 近させ,隙間と出力圧力を U 字管マノメータにて 測定した.

Fig.7 Experimental Equipment (Output Characteristics)

4.2 出力特性の実験結果

近接センサに用いる供給流量を段階的に変化さ せた場合の近接センサの出力特性結果を Fig.8 に 示す.縦軸は出力圧力,横軸はセンサとフラッパ との隙間である.全ての供給流量において隙間が 3mm 以内になると出力圧力が得られ,1mm 以内 で出力圧力が急激に上昇していることが分かる. この傾向は供給流量が大きい場合顕著であり、特 に供給流量が150ml/sのとき、隙間が1mmの時 点で出力圧力が0.2kPa得られることからセンサ の供給量流が増加すると、グラフの傾きが比較的 緩やかになり、分解能が増すことが分かる.

Fig.8 Output Characteristics of Conventional Proximity Sensor

qs=150ml/s における隙間 x と出力圧力 Poの関係 は次式で表される.

Po<0.2	$x = -10.3 \cdot Po + 3.07$	(2)
0.2≦Po≦0.6	$x = 0.101 \cdot Po^{-1.47}$	(3)
Po>0.6	$x = -0.151 \cdot Po + 0.298$	(4)

4.3 LPA の入出力特性

LPA の入出力特性を Fig.9 に示す.縦軸は出力 圧力差,横軸は入力圧力差である.主ノズル幅 bs

Fig.9 Input-Output Characteristic of LPA

と板厚 h を変化させた場合の結果を示す.入力と 出力の間には比例関係があり,これが増幅率を示 している.

流路が狭い場合には内部圧力が上昇するため, 形状の小さい LPA では出力圧力は高くなる.よっ て,スイッチング動作等を行う場合は有効な素子 である.

一方,流路の大きい形状の場合,出力圧力は低いが動作できる入力範囲が広いため,アナログ測定を行う場合には有効な素子である.

4.4 傾斜センサの入出力特性結果(1)

bs=0.375mm, h=0.2mm, qs=4.8ml/sの LPA を接続した傾斜センサの実験結果を Fig.10 に示 す. センサの供給流量は 70ml/s である. 縦軸は 出力圧力, 横軸は近接センサとフラッパとの隙間 である.

1.93mm から 3mm の範囲において近接センサ 単体の場合に比べ,出力圧力が約 18.5 倍増加して いる.これにより,対象物との隙間が非接触で高 い出力圧力を検知することが可能である.

Fig.10 Output Characteristics(1) (Sensor, Inclined Plane Sensor by bs0.375, h0.2)

4.5 近接センサシステムの入出力特性結果(2)

bs=0.75mm, h=0.2mm, qs=10ml/s の LPA を接続した傾斜センサの実験結果を Fig.11 に示 す. センサの供給流量は 70ml/s である. 縦軸は 出力圧力, 横軸はセンサとフラッパとの隙間であ る. 結果から 2.18mm から 3.08mm の範囲におい て, 出力圧力が約 6.6 倍増加していることが分か る. この傾斜センサにおいては LPA の形状が大き いため出力圧力が高くないが,高速応答が可能で ある.

Fig.11 Output Characteristics(2) (Sensor, Inclined Plane Sensor by bs0.75, h0.2)

4.6 周波数応答特性実験

周波数応答実験装置を Fig.12 に示す. モータに は回転円板がついてあり,ノズル先端との隙間が 変わるようにしている.モータの回転数を変えて LPA の出力圧力の変化を測定した. LPA の出力ポ ートにはコンデンサマイクロフォンを取り付け出 力圧力の変化をオシロスコープで観測した.

bs=0.75mm, h=0.2mm, qs=10ml/sのLPA 接続の傾斜センサにおける周波数応答特性の実験結 果を Fig.13 に示す.縦軸は増幅率であり,横軸は 周波数である.また,増幅率は最初の測定値を基 準とした比率で示している.図からLPA は 50Hz を超えても圧力増幅率が減衰しないことが分かる.

これにより、今回測定した領域であれば LPA は センサの信号を充分に追従することが可能である. また、位相差は今回の測定では生じていない.

Fig.13 Frequency Response

4.7 傾斜測定実験

今回考案した傾斜実験装置を Fig.14 に示す. 傾 斜装置にある円板の上下に近接センサをそれぞれ 取り付けており、センサの出力部はLPAの左右の 入力ポートに接続している. 平面が傾斜すると傾 斜装置の円板が傾斜する. これにより LPA を組み 合わせた傾斜センサの出力圧力に差が生じるため, 傾斜角度による出力圧力を測定できる.

Fig.14 Experimental Equipment of **Inclined** Plane

傾斜部分の構造を Fig.15 に示す. 台が傾斜する と台と平行であるコの字型の部分が一軸方向に回 転し平板Aが傾斜する構造である.また,僅かな 角度でも軸を回転させ、圧力変化を得るようにす るため回転部 B にベアリングを取り付けている. これにより、測定精度を高くすることが可能であ る.Cには近接センサのノズルを取り付けている.

Fig.15 Inclined Plane

bs=0.75mm, h=0.2mm, gs=10ml/s の LPA に qs=150ml/s の近接センサを取り付け, 傾斜測定を 行った結果を Fig.16 に示す. 縦軸は出力圧力, 横 軸は傾斜角度である. −3°~3°の範囲で検出角 度と出力圧力は比例関係にある.

Fig.16 Inclined Plane Characteristics

傾斜角度 θと出力圧力 Poの関係は次のように 示される. (5)は左側, (6)は右側の出力圧力特性で ある.

$$\theta^{\circ} = 0.0311 \cdot Po - 3.22 \tag{5}$$

$$\theta^{\circ} = -0.0308 \cdot Po + 3.13 \tag{6}$$

上式から、±10Pa の出力圧力において角度約 ±0.3°が検出できる.

以上の結果より傾斜装置に LPA を組み合わせ た傾斜センサを取り付けることで広範囲で精密な 測定が可能である.

傾斜円板と近接センサのノズルの位置を変える

ことで傾斜角度測定範囲を変えることができる.

応用例としては微圧スイッチなどの計測機器が 挙げられ、今後更なる応用範囲の拡大が可能であ る.

5. 結言

近接センサと LPA を組み合わせた流体式傾斜 センサを考案し傾斜測定実験を行った結果,次の ことがわかった.

- 近接センサとLPAを組み合わせることで高出 力圧力が得られる.
- (僅かな傾斜測定が可能であり, 圧力±10Pa で 約±0.3[°]の傾斜が測定できた.
- 3) 50Hz 程度の高速応答に対し傾斜センサの出 力圧力が充分追従し、高精度で応答範囲の広 い傾斜測定が可能である.

参考文献

- 例えば 清水,佐藤,畑中:層流形比例素子の 圧力ゲインと動作範囲に及ぼす寸法形状の影
 響,計測自動制御学会論文集 Vol.22, No.12 76/81(1985)
- 清水,佐藤,畑中:平面形状が相似な層流形 比例素子の特性比較,計測自動制御学会第1
 回流体制御シンポジウム講演論文集 70/74(1985)
- 3) Shimizu, Hayashi : Characteristics of Pneumatic Proximity Sensor Using a Swirling Jet (Driven by Low Supply Pressure),油空圧学会 Fluid Power Yokohama'96 pp265~269 (1996)