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1. Introduction

In this paper, the controller design for non-

linear servo system by using fuzzy method will

be discussed. Inverted pendulum system has

been used for the simulation to illustrate the

effectiveness of the proposed method. 　 The

inverted pendulum system has been choosing

because it is the suitable example to use for

investigation and verification of various con-

trol methods for dynamic systems. The result

shows that the proposed method can stabilize

the system.

2. System Description

Let the original system S be a nonlinear sys-

tem one as

ẋ = f(x, u) + d (1)

y = g(x) + do (2)

where, x ∈ Rn, u ∈ Rm,y ∈ Rl,d ∈ Rn,do ∈
Rl(m >= l) with,

δx = x− xi (3)

δu = u− ui. (4)

where x is state vector, y is control output, u

is control input, d is state disturbance and do

is output disturbance. n,m and l are dimen-

sions of state, input and output of the system.

The system can be linearized by applying Tay-

lor expansion to (1) and (2) around operating

point (xi, ui), where

δẋ =
∂

∂xT
f (xi，ui) δx+

∂

∂uT
f (xi，ui) δu

+f (xi，ui)+d (5)

y =
∂

∂xT
g (xi) δx+g (xi)+do. (6)

The linear approximated system Si can be rep-

resented as;

ẋ = Aix+Biu+ dxi (7)

y = Cix+ doi (8)

where,

Ai = ∂
∂xT f (xi，ui) , Bi = ∂

∂uT f (xi, ui) , Ci =

– 1 –



∂
∂xT g (xi) , dxi = f (xi，ui)−Ai−Biui+d，doi =

g (xi)− Cixi + do.

Let error of the system be as following

v̇ = y − r. (9)

Derive the augemented system from (7)and (9).

d

dt

[
x

v

]
=

[
Ai 0

Ci 0

] [
x

v

]
+

[
Bi

0

]
u

+

[
dxi

−r

]
(10)

Equation(10) can be re-written as

ż = Aziz +Bziu+ dzi (11)

where,

z =

[
x

v

]
，Azi =

[
Ai 0

Ci 0

]
，Bzi =

[
Bi

0

]
，

dzi =

[
dxi

doi − r

]
.

The system that has ability to follow the ref-

erence given is called as servo system.This sys-

tem in (11) is controllable if controlability con-

dition satisfies.

rank
[
Bzi AziBzi A2

ziBzi ·· An+l−1
zi Bzi

]
=n+l. (12)

This condition is equivalent to the next one.

rank
[
Bi AiBi A2

iBi · · ·· An−1
i Bi

]
=n

rank

[
Ai Bi

Ci 0

]
=n+l (13)

3. Fuzzy Servo Controller

In this section we apply fuzzy method to de-

velop the control rule for the nonlinear system.

First, we divide the operating region of non-

linear system into small area, and treat as a

collection of local linear servo systems (Fig.1).

Fig. 1　 Partition of driving domain Ω

Fuzzy method has been apply to each local lin-

ear system and combines it and can be define

as

Ri：　 IF　 zn ∈ Di　 THEN　 S is Si. (14)

Where, Di is the local driving area, S is the

nonlinear system, Si is the local linear system

and the fuzzy rules are i = −N,…N .zv ∈ Rn

is a vector of nonlinear elements, and

zv = Cv

[
x

u

]
. (15)

zv ∈ Rn is a vector of nonlinear elements, which

are included in controlled system in the equation.Cv ∈
Rnv×(n+m) is a matrix of which its elements are

1 or 0. For example, let

xT =
(
x1 x2 x3

)
,　 uT =

(
u1 u2

)
. (16)

In case of x1, x2, u1 are nonlinear, zv and Cv

can be defined as

zv=

x1x2
u1

,　Cv =

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

 . (17)

Let ωi define as Gaussian type fuzzy member-

ship function (Fig.2) as following.

ωi = e−(zv−zvi)
TQv(zv−zvi) (18)

Qv = Qv
T > 0 (19)
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ρi can be define as,

ρi =
ωi

+N∑
i=−N

ωi

. (20)

The Fuzzy Servo System can be re-write as,

ż =
+N∑

i=−N

ρi (Azix+Bziu+ dzi). (21)

In order to develop new control rule, we cal-

culate each local linear system control rule by

using

u = −Kiz. (22)

Ki is the feedback coefficient matrix of the in-

put. This matrix 　 calculated using Hikita

method 3). Let

fij = −(λjI −Azi)
−1Bzigj (23)

(j = 1, 2, 3, ...n+ l),

gj ∈ Rm, fij ∈ Rn+l.

λj be the eigenvalues and fij be eigenvector of

the system. The feedback co-efficient matrix

can be represented as

Ki =
[
gi1 . . . gi(n+l)

][
fi1 . . . fi(n+l)

]−1

Ki =
[
ki1 . . . ki(n+l)

]
. (24)

Applied fuzzy method to each local linear sys-

tem and combines it as new control law. The

control input u is

u = −
+N∑

i=−N

ρiKiz. (25)

The input u in (25) are applied to system in

(1) and (2).

4. Simulation and Results

The inverted pendulum used in this simu-

lation is shown in Fig.3. It consists of cart

Fig. 2 　 Gaussian type fuzzy membership

function ωi

Fig. 3　 Inverted Pendulum system

and a pendulum. The cart is free to move the

horizontal direction when the force F applies

to it. We assume that the mass of the pen-

dulum and cart are homogenously distributed

and concentrated in their center of the gravity

and the friction of the cart is proportional only

to the cart velocity and friction generating by

the pivot axis is proportional to the angular ve-

locity of the pendulum. The parameters used

for simulation are shown in Table 1.The math-

ematical model of inverted pendulum system

can be described as the following.

(M+m)ẍ+mlcosθθ̈+Dẋ−mlsinθθ̇2=F (26)

mlcosθẍ+
4

3
ml2ddotθ−mglsinθ+Cdotθ=0

(27)
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Table 1 　 Parameters of Inverted Pendulum

System.

Parameter Description Value

Mass of the cart M 0.165kg

Mass of the pendulum m 0.12kg

Distance from pivot l 0.25m

to center of mass

of the pendulum

Gravitational constant g 9.80m/s2

Co-efficient of friction C 0.01kgm/s

for pivot

Co-efficient of friction D 4.0kg/s

for cart

With output as

y=x1 (28)

Define an error of the system as

v̇ = e = y − r. (29)

Re-arranged the equation in term of x1 = x, x2 =

ẋ, x3 = θ, x4 = θ̇ and F = u. The new equa-

tion for inverted pendulum are shown in (30),

(31),(32) and (33).

ẋ1 = x2 (30)

ẋ2 = 3cosx3 (mglsinx3−Cx4)

−4l
(
u−Dx2+mlsinx3x

2
4

)
/(

4l(m+M)+3mlcosx23

)
(31)

ẋ3 = x4 (32)

ẋ3 = −3 ((m+M)(mglsinx3−Cx4)

−mlcosx3(u−Dx2+mlsinx3x
2
4)
)
/(

ml2
(
−4(m+M)+3mcosx23

))
(33)

From the equation, we know that the nonlin-

ear co-efficient for the system is x3 and x4.The

linearization has been done to mathematical

model of the inverted pendulum system us-

ing Taylor expansion as shown in (5) and (6)

around of the operating points for nonlinear

variables x3 and x4. Where,

δx3 = x3 − x3i (34)

δx4 = x4 − x4i. (35)

The linearization has been done and the linear

servo system can be represent as

ż = Aziz +Bziu+ dzi. (36)

Where,

Azi =



0 1 0 0 0

0 a22 a23 a23 0

0 0 0 1 0

0 a42 a43 a44 0

1 0 0 0 0


Bzi =

[
0 b21 0 b41 0

]T
z =

[
x1 x2 x3 x4 v

]T
and dzi =

[
0 d21 0 d41 0

]T
is distur-

bance vector. Each coefficient can be described

as the following

a22 = (−2D(5m+8m−3mcos[2x3i]+6mx3i

sin[2x3i])/(4(m+M)−3mcos2[x3i])
2

a23 = (4ml2x24icos[x3i(−m+8M+3mcos[2x3i])

+3mgl(3m−(5m+8M)cos[2x3i]

−3Cx4i(11m+8M+3mcos[2x3i])

sin[x3i]/(2l(4(m+M)−3mcos2[x3i])
2

a24 = (3Ccos[x3i]+ v8l2mx4isin[x3i]

/(4l(m+M)−3mlcos2x3i)

a42 = (3Dcos[x3i](5m+8M−3mcos[2x3i])

+x3i(11m+8M+3mcos[2x3i]sin[x3i]))

/(2l(4(m+M)−3mcos2[x3i])
2

a43 = (3mgl(m+M)cos[x3i](−m+8M+

3mcos[2x3i]+3x4iml2x4i

(3m−(5m+8M)cos[2x3i]

6C(m+M)sin[2x3i]

/(2l(4l(m+M)−3mlcos2[x3i])
2
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a43 = (3(C(m+M)+m2l2x4isin[2x3i])

/(ml2(−4(m+M)+3mcos2[x3i])

b21 = (2(5m+8M−3mcos[2x3i]+6mx3i

sin[2x3i]/(4(m+M)−3mcos2[x3i])
2

b41 = (−6cos[x3i](5m+8M−3mcos[2x3i])

+2(11m+8M+3mcos[2x3i]sin[x3i]))

/(4l(4(m+M)−3mcos2[x3i])
2.

The controllability of the Servo system of in-

verted pendulum has been investigated using

(12). In this case, the output of system has

been setting as shown in (28) because of the

controllability problem. The relationship be-

tween the output and the state equation can

be proved here. Let the linear system as

ẋ = Ax+Bu+ dx (37)

y = Cx+ do (38)

and the error of the system be as following

v̇ = y − r. (39)

To construct the servo system let,

z=

[
x

v

]
. (40)

Therefore, the servo system can be represent

as

ż=

[
A 0

C 0

]
z +

[
B

0

]
u+

[
dx

do − r

]
(41)

or

ż = Azz +Bzu+ dz (42)

with input as

u = −Kzz. (43)

Into (42)

ż = (Az −BzKz) + dz (44)

Assume that dx = 0, do = 0 and r = 0. So

that when

lim
z→∞

z = 0

z(∞) = lim
z→∞

z

0 = (Az −BzKz)
−1dz (45)

Re-arrange the equation.

z(∞) = −(Az −BzKz)
−1dz (46)

z(∞)=
[
x1(∞) x2(∞) x3(∞) x4(∞) v(∞)

]
=

0 because dz = 0. Let,

Qv =

[
q3 0

0 q4

][
5.0 0

0 5.0

]
(47)

and the nonlinear variables x3 and x4 can be

represent as

zv=

[
x3

x4

]
,　Cv =

[
0 0 1 0 0

0 0 0 1 0

]
(48)

The fuzzy membership function ωi can be rep-

resent as

ωi = e−(zv−zvi)
TQv(zv−zvi)

= e−q3(x3−x3i)
2−q4(x4−x4i)

2
(49)

So that,

ρi =
ωi

+N∑
i=−N

ωi

. (50)

The set of poles used is λ = [−1.1−1.2−1.3−
1.4−1.5] .The feedback coefficient matrices are

calculated using Hikita Method which describe

in section before. Where the control input of

the system is

u = −
+N∑

i=−N

ρiKiz. (51)

with x3i = h3i(−N3 <= i <= N3), x4i = h4i(−N4 <=

i <= N4), N3 = 5, N4 = 5, N = {(2N3+1)(2N4+

1) − 1)}/2 = 60 , increment h3 = 0.05, h4 =

0.05. The initial condition is z0=[0　0　θ　0　0]T
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Fig. 4　Output of the simulation y = x1 = x

Fig. 5　Output of the simulation x3 = θ

with value of angle θ is 32o.The graph in Fig.

5 and Fig.6 shows the output of the simula-

tion. The vertical axes represent displacement

of system in unit meter m and radian. The

horizontal axis represents time in unit second

s. The result shows that not only the output

of system y = x1 = x, but the value of x3 = θ

also converges to zero. The simulation shows

that the fuzzy servo control can stabilize in-

verted pendulum system.

5. Conclusion

In this paper, we apply fuzzy servo control to

inverted pendulum system. The implementa-

tions of the new control method have been dis-

cussed. The simulations have been done and

the results shown that method proposed can

stabilize the system. As shown in the result,

the output of the system follows the reference

given and converges to the reference value as

desired. For future work, study of characteris-

tic of the proposed method will be done by do-

ing the simulation using other system together

with the study of the stability issue.
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