計測自動制御学会東北支部 第 269 回研究集会 (2011.12.12) 資料番号 269-4

高精度立体カム機構のフォロア軌跡の 包絡線を用いたカム面の導出

Derivation of cam surface of high precision 3D cam mechanism using envelope of follower locus

三浦裕文*,藤森優太*,高橋隆行*

Hirofumi Miura*, Yuta Fujimori*, Takayuki Takahashi*

*福島大学

*Fukushima University

キーワード: バックラッシュ(backlash)内視鏡 (endoscope) 立体カム (3D cam) 包絡線 (envelope)

連絡先: 〒 960-1296 福島県福島市金谷川 1 福島大学 理工学群共生システム理工学類 高橋研究室 三浦裕文, Tel.: (024)548-5259, Fax.: (024)548-5259, E-mail: miura@rb.sss.fukushima-u.ac.jp

1. はじめに

近年,低侵襲な手術法として腹腔鏡下手術が 注目されている.しかし,現在一般的に手術の 現場で使用されている腹腔鏡や鉗子は,カメラ での観察やグリッパによる把持を目的とした1 自由度の関節を1つ有するものがほとんどであ る.そのため,内臓の裏側などの観察・処置が 非常に困難であった.

これらの問題を解決するために,先端に多自 由度を有する医療用マニピュレータの研究開発 が盛んに行われている¹⁾²⁾.多自由度を実現す る機構は「ワイヤ方式」が広く用いられ,その 他には「傘歯車方式」や「リンク方式」などが 用いられている.

しかし「ワイヤ方式」の場合,根元から各関節 を介して先端までワイヤで接続されるため,各 関節の独立駆動が困難である.また「傘歯車方 式」の場合,各関節に用いた歯車にバックラッ シュが発生する.そのため,関節を直列に接続 すると誤差が累積し,先端の精度が悪化してし まう「リンク方式」も「ワイヤ方式」と同様に 多関節にした場合,各関節の独立駆動が困難で ある.

これらの問題を解決するためには,バックラッ シュが小さく,独立駆動が可能な関節機構が必 要である.筆者らは小型化が可能であり,高精 度な特性を有する立体カム機構や,同じく高精 度な特性を有する変形クラウンギア減速機構の 開発を行っている³⁾⁴⁾⁵⁾.本研究は,それらの 機構を用いて,Fig.1に示すような医療用小型多 自由度マニピュレータの開発を目標としている. 本研究では腹腔鏡下手術用機器への応用を考え ているため,小径化が必要不可欠となっている. そのため,現在,目標を ϕ 5[mm] として立体力 ム機構の小径化を進めている.本論文では,高 精度立体力ム機構の小径化と並行して行ってい る力ム面の設計方法の改善について述べる.

Fig. 1 Laparoscopy with multi degree of freedom manipulator

Fig. 2 Basic structure of the 3D cam mechanism

2. 高精度立体力ム機構

マニピュレータの関節機構として用いる高精 度立体力ム機構の概要を Fig.2 に示す. 同機構 は三次元的に構成された2つの力ム面を有する カムと,フォロアから構成されている.Fig.3 に 示すように,フォロアはカム面と接するフォロ アアームを2つ有している.これらのフォロア アームがカム面と常に2箇所で接触しながら運 動するため,理論上のバックラッシュはゼロで ある.さらに,本機構は歯車のように歯で力を 伝達するのではなく,部品全体で力を受けて伝 達するため,比較的高い強度を有し,小型化も 容易である.また,設計時に入出力の角度関係 を決めることができ,可逆動性も備えている.

3. 現行のカム面の問題

現在の立体カム機構には設計値通りにカムと フォロアを配置して動作をおこなった際,フォロ

Fig. 3 Detailed structure of the follower of the 3D cam mechanism

Fig. 4 Generated force

アアームにカムを押し付けるように働く力(発生力)が発生してしまっていた.この発生力は Fig.4に示した通り,カムの回転角度によって変 化する.これによってカムの回転角度によって 「カムを回転させるときに必要となるトルク」が 異なるなどの問題が発生する.

これまでこれらの原因は加工精度によるもの と考えられていた.しかし,X線CTを用いて精 密な計測を行ったところ,Fig.5に示すようにカ ム,フォロアともに動作に必要な部分は10[µm] 以内の加工精度で加工できているため,加工精 度の問題ではないことがわかった.

そこで、カム面の設計方法自体に問題がある と考え,設計法の再検討をおこなった.

Fig. 5 Accuracy of finishing

Fig. 6 Assignment of coordinate systems

4. カム面の設計方法

本機構のカム面は円筒状のフォロアアームの 中心軸の移動軌跡を用いて設計を行う.はじめ にフォロアアームの代表点を Fig.7 のように決 める.

このフォロアアームの中心軌跡は基準とする カムの座標系から Fig.8 に示すような座標変換 を行い,以下に示すような同次変換行列を用い て,3次元上の曲線として求められる.

$${}^{c}T_{p} = {}^{c}_{i} T^{i}_{o} T^{o}_{r} T^{r}_{f} T^{c} p_{k} \tag{1}$$

$${}^{c}_{i}T = \begin{pmatrix} \cos(\theta_{i}) & \sin(\theta_{i}) & 0 & 0 \\ -\sin(\theta_{i}) & \cos(\theta_{i}) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(2)
$${}^{c}_{i}T = \begin{pmatrix} 1 & 0 & 0 & x_{0} \\ 0 & 1 & 0 & y_{0} \\ 0 & 0 & 1 & z_{0} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(3)

Fig. 7 Position of the representative point of the follower arms

Fig. 8 Method of deriving the homogeneous transformation matrix

$${}_{i}^{c}T = \begin{pmatrix} \cos(\theta_{o}) & 0 & \sin(\theta_{o}) & 0\\ 0 & 1 & 0 & 0\\ -\sin(\theta_{o}) & 0 & \cos(\theta_{o}) & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)
$$\begin{pmatrix} 1 & 0 & 0 & -d\sin(\theta_{\text{off}})\\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$${}_{i}^{c}T = \left(\begin{array}{ccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -d\cos(\theta_{\text{off}}) \\ 0 & 0 & 0 & 1 \end{array}\right)$$
(5)

そして,以下に示す行列を用いてフォロアアー ムの代表点とした中心軸の軌跡を求める.

$$^{c}p_{1i} = \begin{pmatrix} l_{1} \\ 0 \\ 0 \\ 1 \end{pmatrix} \tag{6}$$

$${}^{c}p_{1o} = \begin{pmatrix} l_{1} + \omega_{1} \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
(7)

$${}^{c}p_{2i} = \begin{pmatrix} l_2 \cos(\theta_{\alpha}) \\ 0 \\ -l_2 \sin(\theta_{\alpha}) \\ 1 \end{pmatrix}$$
(8)

$${}^{c}p_{2o} = \begin{pmatrix} (l_{2} + \omega_{2})\cos(\theta_{\alpha}) \\ 0 \\ -(l_{2} + \omega_{2})\sin(\theta_{\alpha}) \\ 1 \end{pmatrix}$$
(9)

ここで求められた^{*cT_p*はフォロアアームの中心軸 の軌跡となるがカム面と実際に接するのはフォ ロアアームの円筒部である.そのため,中心軌跡 からフォロアアームの半径分の距離を押し下げ てカム面を設計する必要がある.そこで従来の 設計方法では3DCADの機能を使い,導出した 軌跡を基に半径分の距離を押し下げ,カム面を 設計していた.しかし,この3DCADの面を押し 下げる機能はどのようなアルゴリズムで行われ ているかは不明である.さらに面の押し下げ以 外は計算によって導出されているため,3DCAD の機能を用いて設計していた面が本機構に最適 な面ではないと考え,押し下げる部分も踏まえ てカム面を計算で導出することとした.}

5. カム面の導出

カム面はカム面に接するフォロアの形状の包 絡線になることが知られている.よって,本機 構のカム面の両端もフォロアアームの円の包絡 線になっていると考えられる.

そこで,フォロアアームの円が傾きながらフォ ロアアームの中心軌跡に沿って移動する際に描 かれる包絡線を求める.まず,先ほど求めた(1) 式を以下のように定義する.

$${}^{c}T_{p} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ 1 \end{pmatrix}$$
(10)

そして,フォロアアームの中心軌跡を

$$\psi_c(\theta) = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \tag{11}$$

とする.次にフォロアアームの円の法線ベクト ルを $\psi_n(\theta)$ とする.ここで条件として $y_0 = 0$, $\theta_{\text{off}} = 0$, $\theta_o = \theta_i = \theta$, $\theta_\alpha = \frac{\pi}{2}$ とする.そして, 包絡線を求める式として式 (12) を用いた.

$$\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \psi_c(\theta) \pm \left(\frac{\frac{d\psi_c(\theta)}{d\theta}}{\left|\frac{d\psi_c(\theta)}{d\theta}\right|} \times \psi_n(\theta)\right) \quad (12)$$

なお,rはフォロアアームの半径である.この式 ではフォロアアームの中心軌跡の接線ベクトル とフォロアアームの法線ベクトルとの外積を取 り,中心軌跡の接線ベクトルと直行している単 位ベクトルを取る.その単位ベクトルにフォロ アアームの半径rをかけることでフォロアアー ムの中心軌跡を中心とした円の包絡線を描くこ とができる.この包絡線を用いて描かれたカム 面を Fig.9 に示す.

6. カム面の比較

「従来の方法で設計したカム面」と「包絡線 を用いて設計したカム面」を比較した.10度刻

Fig. 10 Difference between new cam surface and old cam surface at certain points

みでそれぞれの座標点の差をスカラー量で求め, Fig.10 に示す「包絡線を用いて設計したカム面」 の全体の傾向としては 3DCAD で設計したカム 面よりも Z 方向に上昇していることがわかった. また,最大で 50[µm] 動いていることから,従来 の設計方法で設計したカム面と異なっているこ とがわかった.

そこで「従来の設計方法で設計したカム」と 「包絡線を用いた設計方法のカム」を比較するこ ととした「従来の設計方法で設計したカム」を 設計値に配置して 3DCAD 上で動かそうとする と Fig.11 のようにカム面にフォロアアームがめ り込んでしまったり,逆にフォロアアームがカ ム面から離れてしまうといった問題があった.

そこで「従来の方法で設計したカム」と「包

Fig. 11 Error of assembly

絡線を用いた方法で設計したカム」を 3DCAD 上で組み立て,入力角度と出力角度を設計値に 設定し,めり込みの深さや接触しなかったとき のカム面からフォロアアームまでの距離を比較 した.回転角度は10度毎とし,0度から90度 まで比較した.比較方法として,フォロアアー ムがカム面にめり込んだときの深さとフォロア アームとカム面との距離,並びにその差の絶対 値で比較した.本機構のカムには2方向を調整 する機構を設けているため、差の絶対値の比較 はより実際に近い誤差の値になると考えられる.

比較の結果を Fig.12 と Fig.13 に示す. Fig.12 と Fig.13 より,「従来の設計方法で設計したカ ム」より設計値に近いことと 80 度以外の角度で は「包絡線を用いて設計したカム」の絶対値の 方が小さいため,より高精度のカム面が生成で きるものと期待できることがわかった.これよ り,包絡線を用いて設計する方法は従来のカム の問題点を解決できる可能性がある.

7. おわりに

本論文では,高精度立体カム機構のカム面の 設計の再検討について述べた.包絡線を用いた 方法で導出されたカム面は従来の設計方法より も理論値に近くなっていることとバックラッシュ の減少が期待されることから,この設計方法は

Fig. 12 Difference of theoretical value

Fig. 13 Comparison of old and new absolute value of difference

従来のカムの問題点を解決できる可能性がある ことがわかった .

今後は包絡線を用いた方法で設計したカムを 実際に製作し,バックラッシュなどの特性の評 価を行い,従来の方法で設計されたカムとの性 能の比較を行う.

参考文献

- 生田幸士,東川文博,緒方洪:遠隔腹腔手術 用超多自由度関節型能動鉗子の研究,日本機械 学会ロボティクスメカトロニクス講演会 99 講 演論文集,1P2-10-005,(1999)
- 2)藤井雅浩,福島清暁,杉田直彦,石丸哲也,岩中 督,光石衛:小児外科手術支援のための極細径 多自由度鉗子の開発,ロボティクス・メカトロニ クス講演会2010予稿集DVD-ROM,2P1-G20, (2010)
- 3) 安沢孝太,佐々木裕之,鄭 聖熹,高橋隆行:低 バックラッシュ立体カム機構を用いたロボット

ハンドの開発-軽量ロボットハンドの試作と関節 機構の評価-,日本ロボット学会誌 Vol.28,No.7, p115-122 (2010)

- 4) 安沢孝太,高橋隆行:低バックラッシュ立体カム機構のパラレルマニピュレータへの応用,ロボティクス・メカトロニクス講演会2010予稿集DVD-ROM,1A2-G22,(2010)
- Hiroyuki Sasaki, Tomoya Masuyama, and Takahashi Takayuki: Development of a Low Backlash Crown Reducer, IROS2010 Conference DVD Proceedings, TuDin.50, (2010)