計測自動制御学会東北支部第272 回研究集会(2012.5.30) 資料番号 272-3

干渉分光イメージングによる多色物体の分光立体像再生

Retrieval of spectral components of three-dimensional images for polychromatic object by interferometric imaging spectrometry

[°]シラウィット ティーラヌタラーノン¹,吉森 久¹

^oSirawit Teeranutranont¹ and Kyu Yoshimori¹ Graduate School of Eng., Iwate Univ.¹

キーワード: Digital holography, Spectroscopy, Fourier transforms, Interferometric imaging

連絡先:〒020-8551 盛岡市上田 4-3-5 Tel: 019-621-6485, Fax: 019-621-6485, E-mail: sirawit@ql.cis.iwate-u.ac.jp

1. はじめに

特別な光源や結像素子・分散素子を利用せ ずに、物体から伝搬した光の純粋な干渉計測と 計算処理のみによって、多色物体の3次元空 間情報と分光情報を同時に取得することができ る¹⁾.このような画像計測手法^{2,3)}を実現するた めに、われわれは2光波折り畳み干渉計と合成 開口処理^{4,5)}を利用する方法を提案した.今回、 空間的にインコヒーレントで互いに異なる連続 スペクトルを有する複数の面光源の再生実験^{6,} ⁷⁾を試みたので報告する.

2. 原理

図1に本研究の実験で利用する 2 光波折り畳 み干渉計の概念を示す.測定対象である多色 光源分布は,*x-yス*テージ上に設置される.光源 分布(S)から伝搬した光波は,ビームスプリッタ ー(BS)によって二つの光波に分割される.分割 された 2 光波はエッジの部分が垂直になるよう に設置された 2 つのプリズム P 及び P'で波面 が上下,左右に反転され,BS 方向へ反射される. 2 つのプリズムから反射した 2 光波は BS によっ て再び重ね合わされる.このとき,分割された 2 つの光波が重ね合わされることによって干渉縞

が発生する. 観測面にある CCD カメラによって, この干渉縞画像を記録する. このとき, 片方のプ リズムをピエゾトランスレーター (Piezo Translator:PZT)で移動させることにより, z 軸方 向の光路差 Z が導入される. 本実験では PZT と x-y ステージの 3 軸を走査することにより, 分 割 2 光波の位置関係を変化させ, それぞれの 位置における干渉縞を記録していく. そのため, これらのデータセットは, 2 次元の干渉縞画像が 3 次元的に配置された 5 次元インターフェログ ラムを構成する(図 2(a))

Fig.2. Illustration of the 5-D interferogram(a), the reduced volume (3-D) interferogram(b) for a monochromatic point source

この 5 次元インターフェログラムに対し, 合成開 ロ処理を適用することにより, 図 2(b)に示すよう な体積型(3-D)のインターフェログラムが得られ る. この体積インターフェログラムから各波長成 分毎の複素ホログラムを計算し, これらのホログ ラムから, 各スペクトルチャンネル毎の 3 次元光 源分布情報を得る.

3. 実験

本研究では、以上に説明した2軸波面折り畳み 干渉計を図1に示すように実際に構築した.ま ず、インコヒーレント光源としてLED(Light Emitting Diode)を使用し、光路差を導入するた めにプリズムPをPZTに載せた、レンズを焦点 距離に置き、レンズを透過した光が上下左右反 転され CCD に受信され PC でそのデータを取 得する.

本実験では、測定対象としてスペクトルの異 なる3色LEDとアクリル棒を用いた.アクリル棒 を加工し、断面形状の異なる3つの面光源は 図3のような大きさと形の光源を作成した.LED から出る光を、固定したアクリル棒の一方の断 面から入射させる.入射光はアクリル棒の中を 伝搬し、反対側の断面から射出される.反対側 の断面は四角形や三角形のような特殊な形状 に加工されており、異なる形状を有する2面光 源となる.これらの面光源は、2光波折り畳み干 渉計の*x-yス*テージ上に設置されており、*x*方向 と*y*方向にそれぞれ 1step あたり 12.9µm で 64step 動く. 更に, プリズム P が設置されたピエ ゾトランスレーター(PZT) は 1step あたり 0.08µm で 64step 動く.

それぞれの光源を S1, S2 とし, それらの波長, 距離, 形状を以下にまとめる:

S1:赤色 LED 中心波長: 630nm,

光源距離: 50mm, 四角断面形状,

S2: 緑色 LED 中心波長: 504nm,

光源距離: 61mm, 左側の三角断面形状,

S3: 緑色 LED 中心波長: 460nm, 光源距離: 70mm, 右側の三角断面形状,

図4は、実験で得られた体積インターフェログ ラムから取得した光源のスペクトル形状であ る.このスペクトルのピークを見てみると、3つの強 いピークが得られていることがわかる.この3つの 強いピークに対応した波長は、460nm、504nm、 630nmになる.

Fig.3. Continuous spectral profile which is obtained by taking Fourier transform of the reduced volume interferogram with respect to Z.

また, 3 つのスペクトルピークにおける相互スペクトル密度から再生処理を行うことにより, 図 9 に示すようなインフォーガス光源像が得られた.

Fig.4. Retrieved spectral images of the three planar light sources: S1(a), S2(b) and S3(c)

ここで、図 4(a)は 50mm の光源距離における再生 像であり、図 4(b)は 61mm の光源距離での再生 像であり、更に 70mm の光源距離における再生 像が図 4(c)である. 再生された光源像の大きさは 実際の光源の大きさと一致していることが確認さ れた. この結果から、複雑な形状の測定対象として 三角形と四角形の光源分布が再生できたと結論 される.

このようにして、2 光波折り畳み干渉計と合成開 ロ処理を用いた手法を互いに異なる連続スペクト ルを有する複数の面光源に適用することにより、 光源のスペクトル情報と3 次元空間情報を同時か つ独立に取得できることが確認された。

4. おわりに

異なる連続スペクトルを有する空間的にインコヒ ーレントな3面光源を作成し、そのスペクトル情報 と3次元空間情報の再生に成功した.本実験結 果より、2光波折り畳み干渉計と合成開口処理を 用いたディジタル分光ホログラフィーの手法によっ て、連続スペクトルを有し、かつ空間的広がりを有 する一般の通常物体においても3次元空間情報 と分光情報を再生できることが結論される.

5. 参考文献

- 1) K. Yoshimori, J. Opt. Soc. Am. A 18 (2001) 765.
- K. Yoshimori, Proc. SPIE 6252, "Holography 2005," edited by Y. Denisyuk et al., 2006, pp. 625221-1-625221-2.
- M. Sasamoto and K. Yoshimori, Jpn. J. Appl. Phyl. 48 (2009) 09LB03.
- K. Yoshimori, "Synthetic aperture coherence multispectral 3-D imaging," Proceedings of International Commission for Optics (ICO), pp. 465-466 (2004).
- Kyu Yoshimori, "Passive digital multispectral holography based on synthesis of coherence function," Proc. SPIE 6252, 625221-1-625221-4 (2006).
- S. Teeranutranont and K. Yoshimori, "Application of digital holographic three-dimensional imaging spectrometry to a spatially incoherent, polychromatic object," Proceedings of Digital Holography and Three-Dimensional Imaging (DH2011) DWC36, (2011).

7) S. Teeranutranont and K. Yoshimori, "Digital holographic three-dimensional imaging spectrometry applied to retrieve spectral components of threedimensional images for a spatially incoherent, polychromatic object," Proceeding of the International Workshop on Holography and related technologies (IWH2011) P04, (2011).