計測自動制御学会東北支部第 274 回研究集会(2012.7.13) 資料番号 274-4

層流噴流の乱流への遷移挙動について

The Transition Behavior to Turbulent Flow of Laminar Flow

○千葉惟平^{*},清水久記^{**},廣木富士男^{***},山本圭治郎[†]
 ○YuiheiChiba^{*}, HisakiShimizu^{**}, FujioHiroki^{***}, KeijiroYamamoto[†]

*一関高専専攻科 **一関高専 ***工学院大学 [†]神奈川工科大学 *Ichinoseki National College of Technology Advanced Engineering Course, **Ichinoseki National College of Technology, ***KogakuinUniv., [†]Kanagawa Institute of Technology

- キーワード: 層流噴流(Laminar Flow), 遷移領域(Transition), 流体抵抗(Fluid Resistance), 圧力低下現象(Pressure Drop Phenomenon), 層流形比例素子(Laminar Proportional Amplifier)
 - 連絡先:〒021-8511 一関市萩荘字高梨 一関工業高等専門学校 制御情報工学科 清水久記 Tel.:0191-24-4759,:E-mail:shimiz6@ichinoseki.ac.jp

1. 緒言

微圧流体の増幅器として知られている層流形比 例素子¹⁾(Laminar Proportional Amplifiers 以下 LPA と略す)は層流域で動作する素子であり,圧力ゲ インが高く,パワー消費量が少ないなどの特徴が ある.また LPA は層流域で動作するため素子内の 流れに相似則が成り立つとされているが,層流域 の範囲が狭いため遷移領域までの範囲を広げるこ とが LPA の動作範囲を拡大するためには有効にな ってくる.しかしながら層流から乱流へ遷移する 際には圧力低下現象²⁾が起こることが知られてお り,これが大きな障害となっている.また,この 圧力低下現象はどのような条件下で起こるかは明 確にされていない.

本研究では新たに供試素子を作製し, 圧力低下 現象の起きる条件を実験的に求めることを目的と した. 寸法を変更した素子による供給特性と回復 圧力特性実験より, 主ノズル幅と板厚のアスペク ト比と圧力低下現象の関係を明確にすること,及 び層流と乱流噴流の入出力特性を明確にすること を試みた.

2. 圧力低下現象

流れには,流速の遅い層流域と流速の速い乱流 域がある.層流域から乱流域へ流れが遷移する際 には圧力が低下する現象が起こるといわれている. Fig.1 にその現象を示す.

Fig.1 Pressure Drop Phenomenon

対向した二つのパイプ A, B を設け,供給側パ イプ A に加える供給圧力pgを増加していくと,受 流側パイプBでの回復圧力p。も上昇していく.し かし,p。が大となるとp。が急激に減少し,その後 再びp。は上昇する.この低下部分が遷移領域であ り,これ以上が乱流領域である.この現象は層流 から乱流への遷移する際の特徴的現象である.

この現象が発生する理由として,層流域の流れ は粒子が層状を維持して流れているが,乱流域で は粒子が乱れる.遷移領域では層流に比べ噴流の 幅が広がることで,受流側での圧力が低下すると いわれている.

この圧力低下現象は,層流域で動作する LPA の 特性を検討する上で大きな影響を及ぼしている. 例えば,LPA の動作範囲が制限されることや,入 出力特性表現で乱流の噴流理論とは合致しないな どの問題点³⁾があるので,これらの改善のために は形状と現象の相互関係を解明することが必要で ある.

3. 実験供試素子及び実験装置

3.1 実験供試素子

実験で用いた供試素子の形状を Fig.2 に示す. 供試素子はワイヤカット放電加工機を用い,プロ グラムにより左右対称になるよう精密加工した. 素子の各寸法の決定は主ノズル幅b₂を基準値とし ており,供給側ポートと受流側ポート間の距離は b₂の8倍である.特性比較のためにb₂が0.375mm, 0.5mm, 0.75mm, 1.0mmの素子を作製した.各部 の寸法は同じ寸法比率としている.また,板厚 h は0.1~1.5mm まで多くの板厚の素子を作製した. 加工した供試素子を Fig.3 に示す.

また,実験では供試素子をアクリル板で上下より挟み実験素子とした.それを Fig.4 に示す.

Fig.2 Schematic Diagram of Test Device

Fig.3 Photograph of Test Device

Fig.4 Structure of Test Device

3.2 実験装置及び実験方法

実験装置の概略を Fig.5 に示す. コンプレッサ で圧縮した空気の流量を減圧弁によって調整し, 供試素子の供給ポートに導く. その際,流量計に よって供給ポートの流量を測定し,供給流量を**q** とする.実験は供試素子の供給側と受流側に U 字 管マノメータを接続し,減圧弁を徐々に開きなが ら,その**p**, **p**,を測定した.

Fig.5 Experiments

4. 実験結果及び考察

4.1 圧力低下現象の有無について

b_s0.75, h0.4 の形状素子の回復圧力特性の実験 結果を Fig.6 に示す.縦軸は回復圧力比,横軸は 供給圧力である.

図においてp₅の増加とともにp₀/p₅も徐々に増 加するが、3kPa付近より低下し、10kPa付近より 再び上昇する傾向を示している.3kPa付近におい てp₅が増加してもp₀が増加せず逆に低下するのは、 これまで層流状態にあった噴流に乱れが生じてお り、層流より乱流へ遷移する際の圧力低下現象が 起きていることを示すと考えられる.

Fig.7 に **b** 0.75 で板厚を変更した時の回復圧力特性を示す.縦軸は回復圧力比,横軸は供給圧力である.

h が大になるに従い,圧力低下現象が顕著に見られる.例えば,*h*0.3の時は*p*,5kPaから圧力低下現象が見られ,*h*0.5の時は*p*,1kPa付近で圧力低下

現象が起き始めている. h が小の場合, 層流状態 を維持して乱れを生じない効果が発生していると 考えられる. それに対し, h が大の時は噴流が主 ノズルから放出されたのち層流を維持することが できなくなるため, 噴流が広がり圧力低下現象が 生じる.

次に,流れを無次元数のレイノルズ数で表示す ることを試みる.該当するレイノルズ数としてア スペクト比λと水力直径d。を代表長さとする次の レイノルズ数⁴⁾を用いる.

$$Re9 = \frac{u_s}{C_d} \frac{d_e}{v} \frac{0.36\lambda + 0.6}{\left(1 + 2\lambda + \frac{0.2}{12}\right)}$$
(1)

ここで、 u_s は主ノズルの流速、 ν は動粘性係数、 λ はアスペクト比(h / b_s)である.また、 C_d は主ノ ズルの流量係数、 d_e は水力直径で、以下の式で示 される.

$$C_d = \frac{q_s}{b_s h} \sqrt{\frac{\rho}{2p_s}}$$
(2)

$$d_{\varepsilon} = \frac{2\lambda b_{\varepsilon}}{1 + \lambda}$$
(3)

Fig.8 にレイノルズ数による回復圧力特性を示 す. 縦軸は回復圧力比,横軸はレイノルズ数であ る.

Fig.8 *po/ps* vs Re9(**b**_s0.75)

図においてレイノルズ数 200 付近までは回復圧 力の増加はほぼ同様であるが,低下する時点は形 状によって異なっている. h0.2 ではレイノルズ数 300 付近で低下するが,これ以上の h では, p₀/p₃ が低下する時点のレイノルズ数は増加する傾向を 示しており, h0.5 ではレイノルズ数 600 付近と低 下する時点が最大となっている. さらに h を増加 させると, p₀ / p₃が低下する時点のレイノルズ数が 減少する.

b₅0.75 では λ0.67 の素子形状が最も長く層流状 態を維持していることを示し、この素子形状を境 として乱流への遷移が起きやすくなっている.

同様にb_sを変更した時の回復圧力特性の結果は, b_s1.0 ではλ0.5 が最も長く層流状態を維持したが, b_s0.375 ではh0.4, またb_s0.5 ではh0.5 が最も長く 層流状態を維持しており,これらのb_sではλ1.0 以 上において層流状態が最も長い.

4.2 供給部の流体抵抗について

次に供給部の流体抵抗について検討する. 圧力 と流量の比が流体抵抗であるが,これは流体の流 れやすさの程度を示す.

Fig.9 に b_s 0.75 での流体抵抗特性を示す. 縦軸は 流体抵抗 R, 横軸はレイノルズ数 Re9 である.こ こで, 流体抵抗は $R = p_s/q_5 (kg/m^4s)$ で示す.

Fig.9 FluidResistance(b_s0.75)

乱流の特徴である非線形性は認められないが, 線形の不連続な時点が存在する.

また,板厚が小であるほど上下の壁の摩擦の影響が大きくなることにより流体抵抗が増大する. すなわち,ノズル断面が狭くなるに従い流体抵抗 が増すことがわかった.**b**。を変更した際もこれら と同様の傾向を示した.

次に各b。の比較のため、Fig.10 に各b。における

流体抵抗を示す.縦軸は不連続が発生するまでの 流体抵抗 *R*,横軸はアスペクト比λを示す.

Fig.10 Comparisons of Resistance of Flow

各 b_s の流体抵抗は λ に比例して減少することを 示しており、 λ が小の時は非常に高い流体抵抗の 値となっている.また、 b_s 0.75では λ 1.0以上、 b_s 1.0 では λ 1.5で流体抵抗がゼロとなっており、上下の 壁の影響が極めて少ないことがわかった.

4.3 供給部の流体抵抗について

Fig.8 より圧力低下現象には,層流から乱流への 遷移が短時間に行われるタイプ,層流状態の維持 が長いタイプ,及び層流から乱流への遷移が緩や かに行われるタイプなどが存在する.そこで素子 形状と圧力低下現象の関連を検討することを試み た.

関係の図を Fig.11 に示す.回復圧力比p。/p。の最 大値を最大回復圧力比,最大回復圧力比からの低 下率を圧力低下比, p。/p。の平行部分を平行部,最 大回復圧力比までの上昇部分を上昇幅とする.

Fig.11 Values of Pressure Drop

Fig.12 に**b** 0.75 素子での上昇幅と平行部の関係 を示す.縦軸は上昇幅と平行部を示すレイノルズ 数の範囲,横軸はアスペクト比である.

Fig.12 Lifting bands of Laminar(b_s0.75)

20.5~0.67 の範囲においては上昇幅, 平行部とも に高い.上昇幅の大小は供給ノズルから出た噴流 が受流側ノズルの間でどの程度層流状態を維持で きるかを示している.よって,上記のアスペクト 比の部分が層流状態を長く維持している形状と考 えられる.

Fig.13 に各形状と上昇幅の関係, Fig.14 に各形状と平行部の関係を示す.

Fig.13 Comparisons of Lifting band

b_s0.375 での上昇幅はλが大になるに従い上昇しており,平行部はλ0.8 を境に減少している.

b_s0.5 では λ0.4~1.0 において上昇幅, 平行部とも に高くなっている.

Fig.14 Comparisons of Flatness

b_s1.0 では λ0.5 において上昇幅, 平行部ともに 高く, 他のb_sと比較し λ0.5 を境に減少が顕著に見 られる.

λ が小の場合,供給ノズルから出た噴流が受流 口に流入するまでの間は上下の壁の影響が大きく, 流れは乱れず,その結果上昇幅も狭く,平行部も 少ない.一方,λ が大となると上下の壁の影響が 少なくなるため乱れやすく,上昇幅,平行部とも 小となることがわかった.平行部においてはp,が 増加してもp。はそれまでと異なり,わずかしか増 加しないことを示す.この部分は層流状態維持の 長さに密接に関係がある.

次に最大回復圧力比と圧力低下比の関係を検討 した. Fig.15 にb₂0.75 素子の最大回復圧力比,圧 力低下比を示す.

Fig.15 Maximum p_0/p_s and Lowering rate

λ0.67~0.8 において最大回復圧力比が高く,特に λ0.67 では圧力低下比も高くなっている.よって, このλの部分においては高い回復圧力となった後, 圧力低下現象により回復圧力比が顕著に減少する ことがわかった.

Fig.16 に各形状と最大回復圧力比の関係, Fig.17 に各形状と圧力低下比の関係を示す.

Fig.16 Comparisons of Maximum p_o/p_s

Fig.17 Comparisons of Lowering rate

b₃0.375 と**b**₃0.5 は同様の傾向を示しており,λ が大になるに従い最大回復圧力比,圧力低下比と もに高くなる.特にλ1.0付近において最も値が高 くなっている.

b₂1.0 は**b**₂0.75 と同様の傾向を示しているが,最 大回復圧力比の最大値は**b**₂0.75 よりも低い λ とな っている.これより,**b**₂が大になるに従い,最大 回復圧力比の最大値の時点のλが低くなることが わかった.

以上のことから、各形状における最も長く層流 を維持できる最適なアスペクト比を求めることが できた. Fig.18 に最適アスペクト比と**b**の関係を 示す.縦軸は最適アスペクト比,横軸は**b**である.

図より、最適アスペクト比はb。の増加とともに

減少する傾向がある.

これより,最適なアスペクト比は次式のように なる.

$$\lambda = -1 \cdot \boldsymbol{b}_{\boldsymbol{s}} + 1.476 \tag{4}$$

4.4 層流と乱流の圧力増加率について

圧力増加は層流と乱流の場合では異なっている ので,次に層流と乱流の圧力増加率について検討 する. Fig.19 にb₃0.75, h0.4 の素子の回復圧力特性 を示す. 縦軸はp₀, 横軸はp₃を示す.

Fig.19 Linearization(b_s0.75,h0.4)

p₅5kPa付近で圧力増加率が異なっている.これ はこの付近で層流状態から乱流に遷移しているこ とを示す.層流と乱流の圧力増加率の近似式は次 のようになる.

層流の場合

$$p_0 = 0.563 p_s - 44.44 \tag{5}$$

乱流の場合

 $p_o = 0.402 p_s - 195.0 \tag{6}$

これより,層流と乱流の圧力増加率は約1.4倍 異なっていることが分かった.Fig.20にb₂0.75, h0.4のLPAの入出力特性³⁾を示す.図の実線部分 は乱流噴流の理論計算値である.実験値は層流状 態で作動するLPAの実験値である.理論値と実験 値は約1.4倍異なっているが,前述の層流と乱流 の圧力増加率と良く一致している.よって,LPA の入出力特性は乱流の入出力特性を補正すること によって表示できることがわかった.

Fig.20 Modified of Input-Output Characteristics(bs0.75 h0.4)

全素子形状の圧力増加率を Fig.21 に示す.縦軸 は圧力増加率 A, 横軸はアスペクト比んを示す.

Fig.21 Comparisons of Amplifier

図より、 b_s 大のときは λ が大になるに従い倍率 は低下する.一方、 b_s 小の時は λ が大になっても 倍率の低下はみられない.

5. 結言

寸法の異なる多くの供試素子を作製し,回復圧 力特性などの実験を行った結果,次のことが分か った.

- h変更による圧力低下現象は, hが大になるに 従い顕著に発生する.
- 2) 0.75 の素子形状ではアスペクト比 0.8 にお いて層流状態を長く維持することができる.
- 7) 層流状態を長く維持する最適アスペクト比が 推定できる.
- 0.75, h0.4 の素子形状において層流と乱流の 傾きは約 1.4 倍の倍率で異なっている.
- 5) LPA の入出力特性は乱流の入出力特性を補正 することによって表示できる.

参考文献

- 清水,佐藤,畑中:平面形状が相似な層流形 比例素子の特性比較,(社)計測自動制御学会
 第 1 回流体制御シンポジウム講演論文集 70/74(1985)
- 2) 尾崎省太郎,原美明共編:純流体素子入門 p17(1967)
- 佐藤潤一他:LPA の入出力特性について,(社) 計測自動制御学会東北支部第251回研究集会 資料番号251-6(2009.7.15)
- 4) 清水久記,廣木富士男,山本圭治郎:層流形 比例素子の代表長さについて,(社)計測自動 制御学会2008年度産業応用部門大会第9回流 体計測制御シンポジウム1/6(2008)