計測自動制御学会東北支部 第 274 回研究集会 (2012.7.13) 資料番号 274-5

シート型微小変位センサを用いた心拍数の推定法

Heart rate estimation using a sheet-shaped microdisplacement sensor

〇荻原健*,杉田典大*,吉澤誠**,本間経康**, 阿部誠*,松岡成己*,斉藤功一***,後藤厚志***

○ Ken Ogihara^{*}, Norihiro Sugita^{*}, Makoto Yoshizawa^{**}, Noriyasu Homma^{**} Makoto Abe^{*}, Narumi Matsuoka^{*}, Koichi Saito^{***}, Atsushi Goto^{***}

*東北大学大学院工学研究科, **東北大学サイバーサイエンスセンター, ***アルプス電気株式会社 技術本部 商品開発部

> *Graduate School of Engineering, Tohoku University, **Cyberscience Center, Tohoku University, ***ALPS Electric Co.,Ltd.

キーワード: 微小変位センサ (microdisplacement sensor), 心電図 (electrocardiogram), 心拍数 (heart rate), R波 (R wave), CVRR (Cofficient of Variation in the R-R intervals)

連絡先: 〒 980-8578 仙台市青葉区荒巻字青葉 6-3
 東北大学サイバーサイエンスセンター 先端情報技術研究部 吉澤・本間研究室
 荻原健, Tel: (022)795-7130, Fax: (022)795-7129, E-mail: ogihara@yoshizawa.ecei.tohoku.ac.jp

1. 研究背景・目的

人間の自律神経は、相反する働きをする交感 神経と副交感神経の2つからなり、この2つが バランスよく働くことで、我々の健康状態は保 たれている.しかし、精神的ストレスなどが原 因で、これらの働きのバランスが崩れることに よって、高血圧症や脳卒中に陥る可能性がある 1,2,3).したがって、これらの病気を予防する 意味で自律神経機能の計測は重要である.自律 神経機能を評価する指標として、心拍数変動の 低周波成分(LF)と高周波成分(HF)の比であ るLF/HF⁴⁾や、RR間隔(心周期の時間間隔) の標準偏差を平均値で割った値である CVRR⁵) などがあるが、これらの指標は数分間にわたっ て心拍数変動を計測するだけで得られる.

心拍数(以下, HR)を高精度に計測する方法 としては、心電図や光電容積脈波などがあるが、 計測自体が測定値に影響を及ぼすという欠点が 挙げられる.すなわち白衣性高血圧という言葉 があるように、計測を意識するとその緊張から 測定値が安静時と異なる結果になるという欠点 を持つ⁶⁾.これに対し、被験者に計測を意識さ せず HRを計測する手法として、ドップラーレー ダを用いた非接触式な計測⁷⁾があるが、電磁波 を胸部にあてる必要があるため、少なくとも心 臓ペースメーカを使用している人は適用できな いといった欠点がある.また、圧力センサや微 小変位センサを用いて HR の計測を行う手法で は、電磁波の問題がなく、計測が容易である一 方で、計測時にセンサと体が密着していなけれ ばならないという欠点を持つ⁸⁾.また、圧力セ ンサや微小変位センサを用いた生体信号の計測 は、睡眠中における心拍数や呼吸数を計測する ものが多く、座位における計測を行った例がほ とんどない.また、睡眠中における計測データ は非常に膨大であり、信号処理に時間を要すと いう欠点を持つ.

また,ドップラーレーダー,圧力センサ,微 小変位センサなどを用いた HR 計測に関する研 究は,センサを1つだけ用いて計測ものが多く, 複数のセンサを用いた体動除去や,センサ位置 による HR の推定精度評価を行った例がほとん どない.

そこで本研究では、体に無害で計測が容易な 微小変位センサを用いて、計測を意識せず日常 生活中の座位における、HR をはじめとした生 体信号を計測することを目的とした.

2. 実験方法·解析手法

2.1 実験方法

微小変位センサを用いて心拍数変動を測定す る実験を行った.

被験者は男性4名,女性2名の計6名で年齢 は25.2±5.8歳である.被験者には自由呼吸で 安静座位を7分間保ってもらい,その間の以下 で述べるセンサ信号を測定した.実験は1人の 被験者に対して4回行った.Fig.1に,本研究 で使用した椅子を示す.椅子の布地の真下には, 微小変位センサ(アルプス電気社製)をFig.2の ような配置で4つ取り付けた.Fig.2における ch とは,チャンネルの略である.Fig.2のように体 とチャンネルの位置が対応するように,被験者 の座る位置を統一した.微小変位センサに圧力 が加わると,センサに微小な歪みが生じ,静電 容量が変化する.実験では,この変化量を電圧 値に変換し,生体用アンプ(Biopac 社製 MP-100)で増幅した後,PCで記録した.さらに, HRのリファレンスとして実験時には心電図も 同時に測定した.サンプリング周波数は,セン サ信号,心電図ともに1kHzで記録を行った.

Fig. 1 実験で用いた微小変位センサ内臓の 椅子

Fig. 2 椅子内部の微小変位センサ配置と身体の対応関係

2.2 解析手法

微小変位センサで得られた信号(以下,セン サ信号)から推定 HR を求めるアルゴリズム, および推定精度評価方法について記す.解析で は、7分間のうち比較的体動の少ない3分間の 信号を用いた.

2.2.1 センサ信号からの HR 推定法

Fig.3に、HR 推定法のフローチャートを示す.

Fig. 3 HR 推定法のフローチャート

以下に, Fig.3 で記した各手順について具体的 に述べる.

(1) 合成信号の生成

チャンネル N(N=1,2,3,4) におけるセンサ信 号の電圧値を V_N とする. このとき V_N の標準偏 差の逆数を a_N とし, $a_N V_N$ のようにして規格 化を行う. 次に規格化された 4 つのセンサ信号 を組み合わせることで合成信号を生成した. 生 成では,各チャンネルの信号について「1 倍し て足す (そのまま用いる)」,「0 倍して足す(用 いない)」,「-1倍して足す(上下反転して用いる)」のいずれかの処理をした後に足し合わせ を行った.取りうる全ての足し合わせ方は80通 り($3^4 - 1$ 通り)ある.これを数式化したもの を,式(1)に示す.左辺の*MixV*は合成信号の 行列表現であり,大きさは80×(データ長)と なる.

$$MixV = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} a_1V_1 \\ a_2V_2 \\ a_3V_3 \\ a_4V_4 \end{bmatrix}$$
(1)

これ以降の処理は,80個の合成信号全てに対して適用した.

(2) フィルタリング

(1) で得られた合成信号に対して、0.01 ~ 5
 Hz の周波数帯を通過する帯域通過フィルタ処
 理を行った.

Fig.4 に,センサ信号と心電図波形の例を示 す.心電図に見られる鋭いピークは,心臓の拍 動に応じて見られるものであり,R波と呼ばれ る.60を隣り合うR波間の時間差(R-R間隔) で除することによって,その瞬間のHR(瞬時 心拍数)が得られる.一方,センサ信号におい ても,心臓の拍動と同期したに応じた急峻な山 が観測される.本稿では,その山の極大値点を 特徴点と呼ぶことにする.

(3) 1 つ目の特徴点の決定

解析開始後10秒間の中で,信号の極小値点か ら次の極大値点まで直線を引いたときの傾きが 最も急峻な山の極大値点を,1つ目の特徴点と した.

(4) 2 つ目以降の特徴点の決定

Fig. 4 センサ信号 (バンドパス処理後) と心 電図波形の例

2 つ目以降の特徴点の探索の仕方を, Fig.5 の フローチャートに示す. ここで閾値 X の初期値 は 200 bpm とし, (4-2)の処理によって適宜更 新を行う.

Fig. 5 2つ目以降の特徴点の決定法

(4-1) 閾値 X に基づく特徴点探索

特徴点探索手法を Fig.6 のフローチャートに示す.

(4-2) 閾値 X の更新

(4-1) で得られた平均推定 HR に 1.2 を乗じた

Fig. 6 閾値 X に基づく特徴点探索

ものを新たな閾値として X を更新する.

(5) 最適な特徴点を持つセンサ信号の候補の選択

(4) の処理により,80 個のセンサ信号全てに おいて特徴点が得られる.この中から以下の2 つのルールに従ってHRを推定するのに最適な 特徴点を持つセンサ信号の候補を選択する.

(ルール1)

Fig.6のループで、特徴点の間隔が心拍変動に 近い信号では、ループが12回に達する前に閾値 *X*が更新されなくなる.このような信号のみを 候補として抽出する.

(ルール2)

ルール1で選ばれた信号全てについて平均推 定HRを計算し,階級間隔を10拍とするヒスト グラムを作成する.最頻値を含む階級と,その 前後の階級に属する信号のみを候補として抽出する.

(6) 特徴点の修正

HRの変動は、不整脈によるものを除いては、 短時間による急激な変動は見られないと考えら れる.このことを利用して、(5)で選択された センサ信号に対し、以下のような特徴点修正を 施す.

すなわち,隣り合う瞬時心拍数の差が15bpm を超えて増加している箇所では,特徴点を取る のが早かったと考え,特徴点を1つ後ろの極大 値点に修正する.逆に,隣り合う瞬時心拍数の 差が15bpmを超えて減少している箇所では,特 徴点を取るのが遅かったと考えられることから, 特徴点の位置を1つ前の極大値点に修正する. これらの修正を行った箇所より後の時刻の特徴 点については(4)における最終的な閾値 X を用 いて特徴点を再度取り直す.これらの修正処理 は,修正条件(瞬時心拍数の差が15bpmを超え る)に当てはまる箇所が存在しなくなるまで繰 り返す.

(7) 推定 HR 信号の決定

(6) までの処理で残ったセンサ信号の中で瞬 時心拍数の分散が最小となるものを最終的な推 定 HR とした.

2.2.2 CVRR

CVRR は式 (2) で表わされ,心拍数ゆらぎの 大きさを表す. CVRR は若年層で 4~10 %,高 齢者で 0~4 %の値を取ることが知られており, 値が大きいほど副交感神経が活性化していると される.

$$CVRR = \frac{RR 間隔標準偏差}{RR 間隔平均} \cdot 100$$
 (%) (2)

2.2.3 生体信号推定精度評価方法

HRの推定精度については、平均絶対誤差率 (MAPE: Mean Absolute Percent Error) と相 関係数によって評価を行った. MAPE は式 (3) で表わされる. HR(i), estHR(i)は、それぞれ 時刻の i における瞬時 HR の真値と推定値を表 し、N はデータ数とする.

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{HR(i) - estHR(i)}{HR(i)} \right| \cdot 100 \quad (\%) \quad (3)$$

一方,目的でも述べたように、本研究では推 定HRから自律神経活動を捉えることを目指し ていることから、関連する指標の1つである CVRR(Cofficient of Variation in the R-R intervals) についても MAPE を求めた.

3. 解析結果

HR, CVRRのMAPEについて,全被験者の 平均値,最大値,最小値をTable 1 に,瞬時心 拍数の推定値と真値の相関係数に関する結果を Table 2 に示す.本センサで得られた HR の相関 係数は平均で 0.70 程度であったが,光電容積脈 波を用いた場合,0.98 程度であることが知られ ていることから,本研究で使用したセンサは,現 段階では実用的ではないといえる⁹⁾.Fig.7 に, 被験者ごとの HR の MAPE を示す.これは,1 人の被験者について4回の計測を行っているた め,4回の MAPE の平均値とその標準偏差を示 したものになっている.

Table 1 HR, CVRR O MAPE (n=24)

			()
	平均	最小	最大
HR	2.79%	1.15%	7.00%
CVRR	27.89%	0.53%	159.64%

Fig. 7 被験者ごとの HR の MAPE の平均値 と分散

4. 考察

Fig.8(a)に、HRのMAPEが最小となった被 験者の、ある 20 秒間の合成信号、心電図波形、 特徴点を、同図 (b)にこの被験者の解析時間全 体(3分間)における HR、CVRRの真値と推 定値の変動を示す.ただしセンサ信号と心電図 波形の電圧値は、最大値、最小値が、それぞれ1 V、-1 Vになるように適当な係数を掛けた後、 振幅方向にシフトしている.これはR波と合成 信号の特徴点の位置を比較しやすくなるように するためである.これを見ると、特徴点の出現 がR波の出現とほぼ同期しており、その結果、 高精度な HR の推定が行えたと考えられる.こ のように解析時間全体にわたって正しく推定が 行えた被験者は、計測中の体動がほとんどなく、 心拍情報の損失が少なかったと考えられる.

一方, Fig.8 と同様の解析を, HRのMAPEが 最大となった被験者について行った結果をFig.9 に示す.これを見ると,合成信号には心拍情報 がほとんど含まれていないことが分かる. 誤差 が発生する基本的な原因は,体動等によって心 拍情報が損失したためだと考えられる.

Fig. 8 (a) HR の MAPE が最小であった被験 者の合成信号,心電図波形,特徴点,(b) HR と CVRR の真値と推定値の変動

今回の実験では、被験者の座る向き、および 位置を統一したにも関わらず、Fig.7のように、 被験者によって MAPE がばらついた.これに関 しては、被験者の座る姿勢を統一しなかったこ とや、被験者の体格や服装の違いで、センサへの 心拍による振動の伝わりやすさが変化したこと が原因だと考えられる.さらに、合成信号の中か ら最適な推定 HR を選択する際に HR の分散が 最小であることを条件としたが、このことが誤 差を生じさせる原因となった可能性が考えられ る.Fig.10に、合成信号の選択を誤った(MAPE が最小の信号を選択しなかった)例を示す.各 点は各合成信号から得られる推定 HR の MAPE

Fig. 9 (a) HRのMAPEが最大であった被験 者の合成信号,心電図波形,特徴点,(b) HRと CVRRの真値と推定値の変動

を表しており、この被験者の場合、提案アルゴ リズムによって選んだ合成信号と、MAPE が最 小値をとる合成信号の間に、約2%の差が生じ ていた.これを見ると、推定 HR の分散が最小 となる信号が必ずしも最適とは限らないことが 分かる.このような結果が得られた原因として は、提案アルゴリズムは、信号の極大値を周期 的に特徴点として採用するものであり、センサ 信号の振幅情報を用いていないことが原因だと 考えられる.

 Fig. 10
 推定 HR とする合成信号の選択を誤った例(分散最小と MAPE 最小が異なる合成信号となった)

5. まとめ

本研究では、複数の微小変位センサから得ら れる信号から、HR を推定する手法を提案した. 計測中の体動が少なく、周期的な信号が観測さ れる被験者のHRの誤差は小さくなる傾向にあっ たことから、HR の推定値と真値の間に生じる 誤差の原因は、体動等による心拍情報の損失だ と考えられた.加えて、被験者の座る姿勢、体 格なども推定誤差に影響を与えると考えられた.

したがって今後は,HR 推定に最適なセンサ 信号を計測できる条件を模索する他,HR 推定 アルゴリズムの見直しが課題となる.

参考文献

- Gribbin B, Pickering TG, Sleight P, Peto R: Effect of age and high blood pressure on baroreflex sensitivity in man. Circulation research. 29(4): 424-431, 1971.
- Mancia G, Ludbrook J, Ferrari A, Gregorini L, Zanchetti A: Baroreceptor reflexes in human hypertension. Circulation Research. 43: 170-177, 1978.
- 3) Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M, Bernardi L: Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension. 46(4): 714-718, 2005.
- 4) Cerutti S, Baselli G, Bianchi A, Signorini MG: Spectral techniques of analysis for blood pressure and heart rate signals, blood pressure

andheart rate variability. IOS Press. 39-55, 1992.

- 5) Shimazaki M, Kikuchi K, Kobayakawa H, Yamamoto M, Kudoh C, Wada A, Sakamoto T, Sawai N, Mukai H, Iimura O: The coefficient of variation of RR intervals (CVRR) on electrocardiogram in patients with essential hypertension with reference to aging, hemodynamics and sympatho-adrenomedullary function. Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics. 28(5): 640-645, 1991.
- 6) 白衣性高血圧の病態:外来および家庭における交感神経活性 http://www.hcc.keio. ac.jp/japanese/healthcenter/research/ bulletin/boh1989/8-15-19.pdf
- 7) Masatoshi Sekine and Kurato Maeno : Non-Contact Heart Rate Detection Using Periodic Variation in Doppler Frequency Corporate R & D Center Oki Electric Industry Co., Ltd
- 8) Xin Zhu , Wenxi Chen , Tetsu Nemoto , Yumi Kanemitsu , Kei-ichiro Kitamura , Kenichi Yamakoshi and Daming Wei : Real-Time Monitoring of Respiration Rhythm and Pulse Rate During Sleep IEEE Transactions On Biomedical Engineering, VOL.53, NO.12 December 2006
- 9) 厚生労働科学研究費補助金研究年度終了報告 書,慢性疲労症候群患者の自律神経機能評価, http://www.fuksi-kagk-u.ac.jp/guide/ efforts/research/kuratsune/h22/pdf/ h22-bun02.pdf