計測自動制御学会東北支部 第 281 回研究集会 (2013.6.21) 資料番号 281-8

方向統計学に基づく位相限定相関関数の統計的性質

Statistical Properties of Phase-Only Correlation Functions Based on Directional Statistics

〇八巻俊輔*, 阿部正英**, 川又政征**

O Shunsuke Yamaki*, Masahide Abe**, and Masayuki Kawamata**

*東北大学国際高等研究教育機構学際科学フロンティア研究所, **東北大学大学院工学研究科電子工学専攻

*Frontier Research Institute for Interdisciplinary Sciences,

International Advanced Research and Education Organization, Tohoku University, **Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

キーワード: 位相限定相関関数 (phase-only correlation functions), 方向統計学 (directional statistics), 円周確 率分布 (circular probability distributions), 平均方向 (mean direction), 円周分散 (circular variance), von-Mises 分布 (von-Mises distribution)

連絡先: 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-05 東北大学大学院工学研究科電子工学専攻川又研究室 八巻俊輔, Tel.: (022)795-7095, Fax.: (022)263-9169, E-mail: yamaki@mk.ecei.tohoku.ac.jp

1. まえがき

位相限定相関 (POC: Phase-Only Correlation) 関数は,2つの信号の類似度を評価する関数と して,信号マッチングをはじめとするさまざまな 分野に幅広く応用されてきた^{1,2,3,4,5,6)}. POC 関数は,2つの信号の位相スペクトルが等しけれ ばデルタ関数になる.しかし,実際の信号マッ チングにおいて,2つの信号の位相スペクトルが 完全に等しくなることはほとんど起こりえない. よって,位相スペクトルが等しいときにPOC 関 数がデルタ関数になる性質は,実際の信号マッ チングには用いることができない.

2 つの信号の位相スペクトルが等しくない場 合の POC 関数の性質について理論的に明らか にするために,筆者らのグループは文献⁷⁾にお いて、2 つの信号の位相スペクトルの差の確率 的変動に対する POC 関数の挙動を統計的に解析 した.この解析法では、位相スペクトルの差を 数直線上に分布する線形データとしてあつかっ ていた.しかし、信号の位相スペクトルは位相 角で表されるため、方向を表す角度データであ る.そのため、位相スペクトルの差を方向をも つ角度データとして考え、その方向の情報を利 用して POC 関数を統計的に解析するための概念 を導入しなければならない.

本論文では、方向統計学という新しい観点か らみた POC 関数の統計的性質を明らかにする. 方向統計学とは、角度観測値を含むデータの科 学であり、たとえば風向きや渡り鳥の飛び立つ 方角、ルーレットの止まる位置、時刻毎の交通 事故発生件数など,方角や時刻などに依存する 量を統計的にあつかう科学である^{8,9,10,11,12)}. この方向統計学の考え方を導入して,位相スペ クトルの差を角度データとしてあつかい,方向 の情報を利用したPOC 関数の統計的性質を理論 的に導出する.その結果,POC 関数の期待値と 分散は,位相スペクトルの差の円周分散を用い て非常に単純な関数で表されることを示す.

2. 位相限定相関 (POC) 関数

本章では、POC 関数を定義し、POC 関数の性 質について述べる.

2.1 POC 関数の定義

長さ N の 2 つの複素信号 x(n) および y(n) を 考える. これらの信号の離散フーリエ変換(DFT) はそれぞれ,

$$X(k) = \sum_{\substack{n=0\\N-1}}^{N-1} x(n) W_N^{kn} = |X(k)| e^{j\theta_k} \quad (1)$$

$$Y(k) = \sum_{n=0}^{N-1} y(n) W_N^{kn} = |Y(k)| e^{j\phi_k}$$
 (2)

で与えられる.ここで、 $W_N = \exp(-j2\pi/N)$ は離散フーリエ変換の回転因子であり、 θ_k およ び ϕ_k はそれぞれ、信号x(n)およびy(n)の位相 スペクトルである.このとき、2つの信号x(n)およびy(n)の間のPOC 関数r(m)は、2つの信 号の正規化クロスパワースペクトルの離散フー リエ逆変換 (IDFT) として、以下で与えられる.

$$r(m) = \text{IDFT}\left[\frac{X(k)Y^*(k)}{|X(k)Y(k)|}\right]$$
$$= \frac{1}{N}\sum_{k=0}^{N-1} e^{j\alpha_k} W_N^{-mk}$$
(3)

ここで、 $\alpha_k = \theta_k - \phi_k$ は2つの信号の位相スペ クトルの差であり、 $e^{j\alpha_k}$ は位相因子とよばれる. 式(3)で定義された POC 関数の原理について

説明する. 2 つの信号 x(n) および y(n) それぞ

れの位相限定信号 $\tilde{x}(n)$ および $\tilde{y}(n)$ を以下で定 義する.

$$\tilde{x}(n) = \text{IDFT}\left[\frac{X(k)}{|X(k)|}\right] = \frac{1}{N} \sum_{k=0}^{N-1} e^{j\theta_k} W_N^{-nk}$$
(4)
$$\tilde{y}(n) = \text{IDFT}\left[\frac{Y(k)}{|Y(k)|}\right] = \frac{1}{N} \sum_{k=0}^{N-1} e^{j\phi_k} W_N^{-nk}$$
(5)

すると、式(3)で定義された POC 関数は、位相 限定信号 $\tilde{x}(n)$ および $\tilde{y}(n)$ の間の相互相関関数 である.式(4) および(5) より、位相限定信号は、 周波数振幅スペクトルをすべての周波数におい て1に正規化して得られた信号である.一般に、 自然音声や自然画像などの信号のエネルギーは 低周波領域に集中している.このとき、振幅ス ペクトルをすべての周波数において1に正規化 することは、信号の高周波成分を強調すること に相当する.例えば自然画像の場合、輪郭を強 調することに相当する.そのため、相互相関関 数に比べて POC 関数の方が相関関数のピークが 鋭くなる傾向にある.

2.2 位相スペクトルの差が一定値である場合の POC 関数

2つの信号の位相スペクトルの差 α_k が周波数 インデックス k に関して一定値であるとき,す なわち $\alpha_k = \theta_k - \phi_k = \gamma(\text{const.})$ であるとき, POC 関数 r(m) は下記のとおりデルタ関数にな ることが知られている.

$$r(m) = \frac{1}{N} \sum_{k=0}^{N-1} e^{j\gamma} W_N^{-nk}$$
$$= \begin{cases} e^{j\gamma} & (m=0)\\ 0 & (\text{otherwise}) \end{cases} = e^{j\gamma} \delta(m) \ (6)$$

POC 関数を用いたマッチング手法において,こ の性質が原理として用いられてきた.しかし,実 際の信号マッチングにおいて,2つの信号の位 相スペクトルの差が一定値になることはほとん どないため,式(6)の性質は実際の信号マッチ ングには用いることができない.そのため,位

Fig. 1 位相スペクトルの差の分散 σ^2 の変化に対する POC 関数 r(m) の変動の例

相スペクトルの差が一定値でない場合の POC 関数の性質について理論的に明らかにしなければならない.

2.3 位相スペクトルの差が一定値でない場 合の POC 関数

2 つの信号の位相スペクトルの差 αk が周波 数インデックス k に関して一定値でないとき の POC 関数の性質は理論的に明らかになって いなかった。簡単な実験例として、位相スペク トルの差 α_k を平均0,分散 σ^2 のガウス分布に したがう確率変数であると仮定し、分散を $\sigma^2 =$ 0,0.25,0.5,1と変化させながらそれぞれ POC 関 数 r(m) を計算した結果を図1に示す。図1よ り、位相スペクトルの差が大きくなるにしたが い, POC 関数 r(m) のピークの高さ |r(0)| が減 少し, |r(m ≠ 0)| の値が増加する傾向にあるこ とが実験的には確かめられるが、この挙動を理 論的に保証できる方法がなかった. そこで, 著 者らのグループでは、統計学の考え方に基づき POC 関数の挙動を解析し、これまで実験的にし か得られていなかった性質に関する理論的な根

3. POC 関数の統計的解析⁷⁾

本章では、著者らのグループがこれまでに行っ てきた POC 関数の統計的解析について紹介する. 位相スペクトルの差が0でない場合の POC 関数 の期待値と分散を理論的に導出し、その挙動に ついて解析した.

3.1 位相スペクトルの差に関する統計的な 仮定

位相スペクトルの差 α_k は確率変数と仮定し、 位相因子 $e^{j\alpha_k}$ の期待値を

$$A = E[e^{j\alpha_k}] \tag{7}$$

とおく. ここで, 位相スペクトルの差 α_k はすべ ての周波数インデックスkに関して同一の確率 分布をもつものと仮定している. そのため, 期 待値Aは周波数インデックスkに依らず一定で ある. また, 期待値Aの値は α_k の確率密度関 数を与えることによって具体的に決まる.

位相スペクトルの差 α_k は周波数インデック ス k に関して互いに独立であると仮定する.す なわち,

$$E[\alpha_k \alpha_l] = E[\alpha_k] E[\alpha_l] \quad (k \neq l) \tag{8}$$

を仮定する.結果,位相因子 $e^{j\alpha_k}$ も周波数イン デックスkに関して互いに独立となるため,

$$E[e^{j\alpha_k}e^{-j\alpha_l}] = E[e^{j\alpha_k}]E[e^{-j\alpha_l}]$$
$$= AA^* \ (k \neq l) \tag{9}$$

が成り立つ. ただし, k = lの場合には

$$E[e^{j\alpha_k}e^{-j\alpha_l}] = 1 \tag{10}$$

が明らかである.

Fig. 2 位相スペクトルの差の分散 σ² に対す る POC 関数 r(m) の期待値 |E[r(0)]| および分 散 Var[r(m)]

3.2 POC 関数の期待値および分散

POC 関数 r(m) の期待値および分散を下記の ように導出した.まず,式(3)および式(7)を用 いて, POC 関数 r(m) の期待値 E[r(m)] を以下 のように導出した.

$$E[r(m)] = A\delta(m) \tag{11}$$

次に, POC 関数 r(m) の分散 Var[r(m)] を以下 のように導出した.

$$\operatorname{Var}[r(m)] = \frac{1}{N}(1 - AA^*)$$
 (12)

式(11)および式(12)がそれぞれ POC 関数r(m)の期待値および分散の一般式である.ここで,位 相スペクトルの差 α_k の確率密度関数を仮定す ることにより,式(11)および式(12)の値が具体 的に決まる.

3.3 特性関数を用いた POC 関数の期待値 および分散の導出

位相スペクトルの差の確率密度関数が与えら れたとき、その特性関数を用いて POC 関数の期 待値および分散を導出できる.ある確率変数 α の確率密度関数 $p(\alpha)$ の特性関数 $\psi_{\alpha}(t)$ は以下で 定義される.

$$\psi_{\alpha}(t) = E[e^{j\alpha t}] = \int_{-\infty}^{\infty} e^{j\alpha t} p(\alpha) d\alpha$$
 (13)

すなわち,特性関数 $\psi_{\alpha}(t)$ は確率密度関数 $p(\alpha)$ のフーリエ変換である.ここで, $A = E[e^{j\alpha}]$ は特性関数 $\psi_{\alpha}(t)$ を用いて以下のように表すことができる.

$$A = E[e^{j\alpha}] = \int_{-\infty}^{\infty} e^{j\alpha} p(\alpha) d\alpha$$
$$= \psi_{\alpha}(1)$$
(14)

したがって、特性関数が知られている代表的な 確率分布に関しては、その特性関数を利用して POC 関数の期待値および分散を簡単に導出する ことができる。

例として、位相スペクトルの差 α_k が平均0, 分散 σ^2 のガウス分布にしたがう確率変数と仮 定する.すなわち、 α_k の確率密度関数 $p(\alpha_k)$ は

$$p(\alpha_k) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\alpha_k^2}{2\sigma^2}} (-\infty < \alpha_k < \infty)$$
(15)

と表される.このとき、確率密度関数 $p(\alpha_k)$ の 特性関数 $\psi_{\alpha_k}(t)$ は

$$\psi_{\alpha_k}(t) = e^{-\frac{1}{2}\sigma^2 t} \tag{16}$$

となる¹³⁾. よって, $A = E[e^{j\alpha_k}]$ は

$$A = E[e^{j\alpha_k}] = \psi_{\alpha_k}(1) = e^{-\frac{\sigma^2}{2}}$$
(17)

と導出される.式(17)を式(11)および式(12)に 代入し,

$$E[r(m)] = e^{-\frac{\sigma^2}{2}}\delta(m)$$
(18)

Var
$$[r(m)] = \frac{1}{N}(1 - e^{-\sigma^2})$$
 (19)

を得る.

式(18) および式(19) より,位相スペクトルの 差の分散 σ^2 に対する POC 関数 r(m)の期待値 |E[r(0)]|および分散 Var[r(m)]のそれぞれの値は 図 2 のように図示できる.位相スペクトルの差の 分散 σ^2 が増加するにしたがい,期待値 |E[r(0)]| は1から0に単調減少し,分散 Var[r(m)] は0か ら1/N に単調増加する.式(18) および式(19) は,図1に示した実験的に得られた結果に対し て理論的な根拠を与えている.

3.4 これまでの統計的解析の問題点

これまで著者らが行ってきた POC 関数の統計 的解析法⁷⁾には問題点があった.それは、位相 スペクトルの差 α_k を線形データとしてあつかっ ていたことである. 位相スペクトルの差は角度 データであるため、本来 $[-\pi,\pi)$ の範囲の実数 値しかとることができない. しかし、ガウス分 布を仮定した場合、式(15)で表されるように、 位相スペクトルの差 αk が任意の実数値をとる ことを許してしまうため、角度データの仮定に 反する. 任意の実数値 $\alpha_k \in (-\infty, \infty)$ に 2π [rad] の周期性を仮定すればよいが、これまでの解析 においては、そのような周期性も考慮していな い. すなわち, 位相スペクトルの差 αk を単な る線形データとしてではなく、方向の情報をも つ角度データとして統計的にあつかう概念を導 入しなければならない.

4. 方向統計学的観点からみた POC 関数の統計的性質

本章では、方向統計学という新しい概念に基 づき POC 関数の統計的性質を明らかにする.こ れまでの POC 関数の統計的解析においては、位 相スペクトルの差を線形データと仮定していた が、本章では、位相スペクトルの差を角度デー タとしてあつかい、方向の情報を利用した POC 関数の統計的解析を行う.

4.1 方向統計学の基礎

方向統計学とは,角度観測値を含むデータの 科学であり,たとえば風向きや渡り鳥の飛び立 つ方角,ルーレットの止まる位置,時刻毎の交通

(b) 円周ヒストグラム

Fig. 3 ある病院に搬送された時刻ごとの患者 数データ⁸⁾のヒストグラム表示

事故発生件数など、方角や時刻などに依存する 量を統計的にあつかう科学である^{8,9,10,11,12)}. これらの量は、数直線上に分布するデータとし てではなく、円周上に分布するデータとして考 えると都合がよい. その一例として、ある病院 に搬送された時刻ごとの患者数のデータ⁸⁾をヒ ストグラム化したものを図3に示す.一般的な 統計学に基づき、時刻を数直線上のデータとみ なすと、図 3(a) に示されるような線形ヒストグ ラムが得られる.しかし、実際には0時と24時 は同じ時刻であり、図3(a)のヒストグラムの左 端と右端は循環してつながっていることに注意 が必要である. そのため, このような時刻に依 存するデータは、図3(a)のような線形ヒストグ ラムで表すよりも、図3(b)のような円周ヒスト グラムで表す方が適している.

Fig. 4 方向統計学における平均方向と円周分散の幾何学的解釈.角度確率変数 α₁ および α₂ が与えられたときの 1 次三角モーメント A₁,平均合成ベクトル長 |A₁|,平均方向 ā,円周分散 *v*,算術平均 ā.

方向統計学では、角度データを表す統計量を角 度確率変数を用いて記述する.そして、角度デー タを単位円周上の点と対応づけて平均や分散な どを定義する.まず、角度確率変数 $\alpha \in [-\pi, \pi)$ に関して、

$$A_p = E[e^{jp\alpha}] \tag{20}$$

を p次三角モーメントという. ここで、1 次三 角モーメント $A_1 = E[e^{j\alpha}]$ を用いて、平均合成 ベクトル長 \overline{R} が

 $\bar{R} = |A_1| \ (0 \le \bar{R} \le 1)$ (21)

で定義され、平均方向 $\bar{\alpha} \in [-\pi,\pi)$ が

$$\bar{\alpha} = \arg(A_1) \tag{22}$$

と定義される.ただし、 $A_1 = 0$ となる場合には 平均方向 $\bar{\alpha}$ は定義されない.さらに、円周分散 v が平均合成ベクトル長 \bar{R} を用いて

 $v = 1 - \bar{R} \ (0 \le v \le 1)$ (23)

で定義される.

簡単な例として,2つの角度確率変数 α₁ およ び α₂ の平均方向 ā と円周分散 v の幾何学的な 解釈を図4に示す. 平均方向 α は,角度確率変 数 α を複素数平面上の単位ベクトル $e^{j\alpha}$ に対応 づけたときの平均的な方向を表しており,円周 分散vは単位ベクトル $e^{j\alpha}$ の方向のばらつき度 合を表している. 平均と分散の定義のしかたが 一般の統計学とは異なる点に注意しなくてはな らない. またこの例の場合,平均方向 α と算術 平均 $\hat{\alpha} = (\alpha_1 + \alpha_2)/2$ が異なることにも注意が 必要である.

4.2 円周確率分布

一般に、角度確率変数 $\alpha \in [-\pi, \pi)$ は複素数 平面における単位円周上の点 $e^{j\alpha}$ と対応づけら れるため、角度確率変数の分布は円周確率分布 とよばれる.円周確率分布の確率密度関数 $p(\alpha)$ は以下の2式で与えられる条件

$$p(\alpha) \ge 0 \ (-\pi \le \alpha < \pi) \tag{24}$$

$$\int_{-\pi}^{\pi} p(\alpha) d\alpha = 1$$
 (25)

を満たす必要がある.また,円周確率分布の確 率密度関数 $p(\alpha)$ の特性関数 $\psi_{\alpha}(t)$ は以下で定義 される.

$$\psi_{\alpha}(t) = E[e^{j\alpha t}] = \int_{-\pi}^{\pi} e^{j\alpha t} p(\alpha) d\alpha$$
 (26)

すなわち、p次三角モーメント A_p は、特性関数 $\psi_{\alpha}(t)$ を用いて

$$A_p = \psi_\alpha(p) \tag{27}$$

と表せる.

4.3 POC 関数との関連性

POC 関数の統計的解析において、位相スペク トルの差 α_k は角度データと考えることができ る. そのため、一般の統計学に基づいて線形デー タとしてあつかうのではなく、方向統計学に基 づいて角度データとしてあつかう方が理論的に 妥当である. すると、従来の POC 関数の統計的

- 6 -

解析の考え方が方向統計学の考え方と関連づけ られることがわかる.

まず,式(7)における $A = E[e^{j\alpha_k}]$ はまさに1 次三角モーメントである.この定数Aを用いる と,式(21)および式(23)でそれぞれ与えられる 平均合成ベクトル長 \bar{R} および円周分散vが

$$\bar{R} = |A| \tag{28}$$

$$v = 1 - |A| \tag{29}$$

と表せることがわかる. ここで,

$$|A| = 1 - v \tag{30}$$

であることを用いると, POC 関数 *r*(*m*) の期待 値 *E*[*r*(*m*)] および分散 Var[*r*(*m*)] は, 位相スペ クトルの差の円周分散 *v* を用いて以下のように 表すことができる.

$$|E[r(m)]| = |A|\delta(m)$$

= $(1 - v)\delta(m)$ (31)
$$Var[r(m)] = \frac{1}{N}(1 - |A|^2)$$

= $\frac{1}{N}(1 - (1 - v)^2)$ (32)

すなわち, POC 関数 r(m) の期待値 E[r(m)] お よび分散 Var[r(m)] はそれぞれ, 円周分散 v の 1 次関数および 2 次関数として非常に単純な形 で表せる.

式 (31) および式 (32) より, 位相スペクトル の差の円周分散 v に対する POC 関数のr(m) の 期待値 |E[r(0)]| および分散 Var[r(m)] のそれぞ れの値は図 5 のように図示できる. 任意の円周 確率分布に関して, 位相スペクトルの差の円周 分散 v が 0 から 1 に増加するにしたがい, 期 待値 |E[r(0)]| は 1 から 0 に単調減少し, 分散 Var[r(m)] は 0 から 1/N に単調増加する. すな わち, 第 3 章で紹介した従来の POC 関数の統計 的解析の結果と似た傾向が得られている.

5. 計算例

本章では、位相スペクトルの差に具体的な円 周確率分布として von-Mises 分布を仮定し、POC

Fig. 5 位相スペクトルの差の円周分散 v に対 する POC 関数 r(m) の期待値 |E[r(0)]| および分 散 Var[r(m)]

関数の期待値と分散を導出する.von-Mises分布 は、方向統計学の分野でよく知られている対称 かつ単峰な分布であり、円周正規分布ともよば れる.

位相スペクトルの差 α_k が von-Mises 分布 VM($\bar{\alpha}, \beta$) にしたがうと仮定する.ここで、 $\bar{\alpha}$ は平均方向、 β は集中度を表す.このとき、 α_k の確率密度関 数 $p(\alpha_k)$ は

$$p(\alpha_k) = \frac{1}{2\pi I_0(\beta)} e^{\beta \cos(\alpha_k - \bar{\alpha})} \left(-\pi \le \alpha_k < \pi \right)$$
(33)

と表される.ここで、 $I_{\nu}(x)$ は第1種 ν 次修正 Bessel 関数であり、以下で定義される.

$$I_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{l=0}^{\infty} \frac{1}{l! \Gamma(\nu+l+1)} \left(\frac{x}{2}\right)^{2l} (34)$$

平均方向 0,集中度 β の von-Mises 分布 VM(0, β) の確率密度関数を図6に示す.von-Mises 分布は, 集中度 β の値が大きいときガウス分布に似た分 布となる.また,集中度 $\beta = 0$ のときには,式 (33)に $\beta = 0$ を代入して

$$p(\alpha_k) = \frac{1}{2\pi} \left(-\pi \le \alpha < \pi \right) \tag{35}$$

を得るため、一様分布 $U(-\pi,\pi)$ と等しくなる.

Fig. 6 von-Mises 分布 VM(0, β) の確率密度 関数

von-Mises 分布 VM $(\bar{\alpha}, \beta)$ にしたがう角度確率 変数 α_k の確率密度関数 $p(\alpha_k)$ の特性関数 $\psi_{\alpha}(t)$ は

$$\psi_{\alpha}(t) = \frac{I_{|t|}(\beta)}{I_0(\beta)} e^{j\bar{\alpha}t}$$
(36)

で与えられる.これより, Aは

$$A = E[e^{j\alpha_k}] = \psi_{\alpha}(1) = \frac{I_1(\beta)}{I_0(\beta)}e^{j\bar{\alpha}} \qquad (37)$$

と算出される.ここで、平均方向 $\bar{\alpha} = 0$ のときには

$$A = \frac{I_1(\beta)}{I_0(\beta)} \tag{38}$$

となる.一方で、von-Mises 分布 VM($\bar{\alpha}, \beta$) にし たがう角度確率変数 α_k の円周分散 v は以下で 与えられる.

$$v = 1 - \frac{I_1(\beta)}{I_0(\beta)} = 1 - |A|$$
(39)

これは,式(29)の結果と合致している.以上より,POC 関数 r(m)の期待値 |E[r(m)]| および 分散 Var[r(m)] は

$$|E[r(m)]| = |A|\delta(m)$$

= $\frac{I_1(\beta)}{I_0(\beta)}\delta(m)$ (40)

$$\operatorname{Var}[r(m)] = \frac{1}{N} (1 - AA^*)$$
$$= \frac{1}{N} \left(1 - \left(\frac{I_1(\beta)}{I_0(\beta)} \right)^2 \right) \quad (41)$$

と集中度βを用いた形で表せる.

Fig. 7 位相スペクトルの差の集中度 β に対す る POC 関数 r(m) の期待値 |E[r(0)]| および分散 Var[r(m)]

式 (40) および (41) より, 位相スペクトルの差 の集中度 β に対する POC 関数の r(m) の期待値 |E[r(0)]| および分散 Var[r(m)] のそれぞれの値 は図 7 のように図示できる.ここで,集中度 β は $0 \le \beta \le 10$ の範囲で変化させた.図 7 より, 位相スペクトルの差の集中度 β が増加するにし たがい,位相スペクトルの差の円周分散 v が小 さくなるため,期待値 |E[r(0)]] は 0 から 1 に単 調増加し,分散 Var[r(m)] は 1/N から 0 に単調 減少する.

6. むすび

本論文では、方向統計学の考えを新たに導入 して POC 関数の統計的性質を明らかにした. 2 つの信号の位相スペクトルの差を角度確率変数 と仮定して、その確率分布として円周確率分布 を仮定した.その結果、POC 関数の期待値およ び分散は、それぞれ位相スペクトルの差の円周 分散の1次関数および2次関数として非常に単 純な形で表せることを示した.また、位相スペ クトルの差の円周分散が増加するにしたがい、 POC 関数の期待値 |*E*[*r*(0)]| は単調減少し、分 散 Var[*r*(*m*)] は単調増加することを理論的に示 した.最後に、代表的な円周確率分布のひとつ である Von-Mises 分布を仮定し, POC 関数の期 待値と分散を導出してその性質を明らかにした. 本論文の結果は,これまで実験的にしか得られ ていなかった POC 関数の性質に関して,理論的 な根拠を与えた.

参考文献

- C.D. Kuglin and D.C. Hines, "The phase correlation image alignment method," Proc. Int. Conf. Cybernetics and Society, pp.163–165, 1975.
- G. Wolberg and S. Zokai, "Robust image registration using log-polar transform," Proc. IEEE International Conference on Image Processing, pp.493–496, Vancouver, Canada, Sept. 2000.
- H. Foroosh, J. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE Trans. Image Process., vol.11, no.3, pp.188–200, March 2002.
- M. Hagiwara, M. Abe, and M. Kawamata, "Estimation method of frame displacement for old films using phase-only correlation," Journal of Signal Processing, vol.8, no.5, pp.421–429, Sept. 2004.
- A.K. Brodzik, "Phase-only filtering for the masses(of DNA data): A new approach to sequence alignment," IEEE Trans. Signal Process., vol.54, no.6, pp.2456–2466, June 2006.
- K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, "An effective approach for iris recognition using phase-based image matching," IEEE Trans. Pattern Anal. Mach.. Intell., vol.30, no.10, pp.1741–1756, Oct. 2008.

- S. Yamaki, J. Odagiri, M. Abe, and M. Kawamata, "Effects of stochastic phase spectrum differences on phase-only correlation functions —Part I: Statistically constant phase spectrum differences for frequency indices —," Proc. IEEE Int. Conf. Network Infrastructure and Digital Content, pp.360–364, Beijing, China, Sept. 2012.
- N.I. Fisher, "Statistical analysis of circular data," Cambridge University Press, 1993.
- I.L. Dryden and K.V. Mardia, "Statistical shape analysis," John Wiley & Sons Ltd, 1998.
- 10) K.V. Mardia and P.E. Jupp, "Directional statistics," John Wiley & Sons Ltd, 2000.
- S.R. Jammalamadaka and A. SenGupta, "Topics in circular statistics," World Scientific, 2001.
- 清水邦夫, "方向統計学の最近の発展,"計算 機統計学, vol.19, no.2, pp.127–150, 2006.
- 13) H. Stark and J.W. Woods, "Probability and random processes with application to signal processing," Prentice Hall, Upper Saddle River, New Jersey 07458, 2002.