計測自動制御学会東北支部 第 283 回研究集会 (2013.10.25) 資料番号 283-7

コンデンサモータにおける回転子の損失推定に関する研究 Study on estimation of the rotor loss in capacitor motor

> ○杉澤学*,田島克文* ○Sugisawa manabu*,Katsubumi Tajima* *秋田大学 *Akita University

キーワード: コンデンサモータ (capacitor motor),回転子電流 (rotor current), 磁気抵抗回路網解析 (reluctance netwok analysis), 回転子起磁力 (rotor magnetomotive force)

連絡先:〒010-8502 秋田県秋田市手形学園町1-1 秋田大学大学院 工学資源学研究科 杉澤 学, Tel.:(018)889-2337, Fax.:(018)837-0406, E-mail:m9012149@wm.akita-u.ac.jp

1. はじめに

地球温暖化防止には、省エネルギー対策が不 可欠であり、モータを代表する電気機器の高効 率化を目指した研究開発が行われている^[1].ま た、現在主流である高効率モータの多くは永久 磁石モータであり、励磁磁石に多くのレアアー スを用いている.その供給体制には様々な世界 情勢が関係し、モータの生産量に大きく影響す る可能性がある^[2].そこで、本研究ではレアア ースを使用しない誘導電動機の高効率化を目 指すものとする.本研究対象であるコンデンサ モータは、電源に単相電源を用いることから家 庭用・小工業用として広く利用されており、高 効率化が与える影響が大きいと考えられる.

モータの効率化の研究を進めるにあたって,

固定子及び回転子の構造・材質よりモータの特 性を高精度で算定可能な方法が必要不可欠で ある.回転機の特性解析には有限要素法(FEM) を用いるのが一般的ではあるが,高精度の特性 解析には多くのメモリと多大な解析時間が必 要であるため,実用的ではない.そこで,解析 対象をいくつかの要素に分割してそれぞれを 磁気回路で表し,全体を磁気抵抗回路網で表現 する RNA (Reluctance Network Analysis,磁 気抵抗回路網解析)と呼ばれる解析法が誘導機 の特性算定に有効であることが過去の研究で 明らかにされた^[3].

しかし,同期速度付近で精度の高い解析結果 が得られている.一方で,回転子の低速回転時 では解析精度の低下する傾向にあり,特に回転 子拘束時の主巻線電流と回転子損失の解析精 度は高くなく,モデルの改良が必要とされていた.そこで,この精度の原因は回転子解析モデルであると考え,その改良を検討した.

2. 解析対象

解析対象であるコンデンサモータの基本回 路図を図1に示す. 図中の V_m は印加電圧, i_m は 主巻線電流, i_a は補助巻線電流, C_r は運転用コ ンデンサ, C_s は始動用コンデンサである. コン デンサモータの諸元を表1に示す.本解析では 補助巻線を解放して回転子拘束時とし,主巻線 電流のみにより励磁を行った場合を考える. そ の時の固定子巻線配置^[4]を図2に示す.

固定子及び回転子の磁心層は新日本製鐵無 方向性ケイ素鋼板 50H600 が使用されている ものとし,その比透磁率はカタログ値より 4000 とし,回転子導体に関しては非磁性材料である ことから空気と同じ比透磁率1とした.

コンデンサモータは,主巻線電流と補助巻線 電流の位相のずれから回転磁界を生じさせる ことで回転を起こす誘導モータの一種である.

図1 コンデンモータの基本構造

表1 コンデンサモータの諸元

Frequency [Hz]	50	60	
Voltage [V]	100/200	100/200	
Current [A]	12.6/6.3	10.8/5.4	
Output [W]	750		
Number of poles	4		
Running capacitor [µF]	40		
Starting capacitor [µF]	350		
Number of stator slots	36		
Internal diameter of stator [mm]	φ90		
Outer diameter of stator [mm]		0145	
Stator slot pitch [°]	10		
Number of rotor slots	44		
Outer diameter of rotor [mm]	\$ \$9.4		
Gap width [mm]	0.3		
Iron core length [mm]	93		
Main winding resistance $[\Omega]$	0.63		
Auxiliary winding resistance $[\Omega]$	2.	84	

Slot number	Turns	Slot number	Turns	
17-20	7	29-26	7	
16-21	11	30-25	11	
15-22	14	31-24	14	
14-23	7	32-23	7	
Slot number	Turns	Slot number	Turns	
Slot number 35-2	Turns 7	Slot number 11-8	Turns 7	
Slot number 35-2 34-3	Turns 7 11	Slot number 11-8 12-7	Turns 7 11	
Slot number 35-2 34-3 35-4	Turns 7 11 14	Slot number 11-8 12-7 13-6	<u>Turns</u> 7 11 14	
Slot number 35-2 34-3 35-4 32-3	Turns 7 11 14 7	Slot number 11-8 12-7 13-6 14-5	Turns 7 11 14 7	

図2 主巻線配置

3. コンデンサモータの RNA モデル

3.1 RNA について

RNA (Reluctance Network Analysis, 磁気 抵抗回路網解析) は解析対象をいくつかの要素 に分割してそれぞれを簡単な磁気回路で表現 し,全体を磁気回路網でモデル化する,電気機 器の解析手法である.有限要素解析と比較して 要素分割が少なくて済み,解析モデルの導出が 容易であり,SPICE などの汎用回路シミュレ ータにより高速で高精度な解析が可能である などと言った特徴が挙げられる.

3.2 コンデンサモータの固定子の RNA モデル

本研究で用いるコンデンサモータは固定子 スロットが 36 個であるため,円周方向に 36 分 割する.各分割要素は歯,スロット,磁心外空 間も考慮してさらに図 3 に示すように 15 分割 する.各要素に図 4 のような 2 次元の単位磁気 回路を挿入していき,磁気回路網を作成する.

これら単位磁気回路の磁気抵抗は式(1) で表 現する.

$$R_m = \frac{l}{\mu_0 \mu_s S} \tag{1}$$

ここで、 μ_0 は真空の透磁率、 μ_s は比透磁率、Sは 断面積、lは磁路長である.また、起磁力源には 主巻線配置の分布巻を考慮した起磁力源を与 えた.

図3 固定子の1/36モデル

3.3 コンデンサモータの回転子の RNA モデル

コンデンサモータの回転子であるかご型回 転子は図5に示すような導体バーを2つの端絡 環で挟み込む構造となっている.そこで回転子 の電気回路を図6の,隣り合う2本の導体バー と端絡環で1ターンのコイルが構成されてい ると考え,鎖状に44個連なる電気回路モデル を構築した.ワンターンコイルは固定子の巻線 から流入する磁束の値により,dΦ/dtの起電力 が発生し,これにより回転子電気回路に渦電流 が流れる.この電流はレンツの法則より,流入 する磁束の変化を妨げる向きに働き,回転子か ら固定子に向かう起磁力を発生させる.この起 磁力を図7のように,磁束の変化を妨げる向き に配置し,誘導電流が流入する磁束に与える影 響を考慮した.

4. 表皮効果を考慮した回転子の解析[5]

従来のモデルでは,回転子1本の導体バーに 一様に電流が流れると考えていた.しかし,回 転子導体バーは径方向に細長い構造のため,表 皮効果などの影響により,導体バー内において 電流分布が現れると考え図8に示すよう,径方 向に3層に分割し,周方向磁束を考慮した解析 モデルの構築を行った.

その時の解析結果を表2に示す.ここで回転 子損失は、入力電力から固定子銅損を引いた値 となっている.また、回転子拘束状態で印加電 圧が25[V]と低いため、回転子損失のほとんど が回転子銅損と考えた.主巻線電流と回転子損 失を従来のモデルと比較すると、どちらも実験 値に近づく結果となったが、未だに解析結果と 実験値の差異は大きく、解析モデルに改善の余 地があると言える.

これら,解析結果の差異の原因として,回転 子から固定子に働く起磁力においてモデルの 設定に問題があったと考え,本研究では従来モ デルを用いて回転子拘束時における,回転子か ら発生する起磁力の再設定により,解析精度の 向上を図るものとした.

図8 表皮効果を考慮したモデル

表2 表皮効果を考慮したモデルの解析結果

	Meas.	Previous model	Skin effect model
Input voltage [V]	25	25	25
Main winding current[A]	12.6	18.2	16.5
Rotor loss[W]	146	221	176

5. 回転子起磁力の再設定

従来の回転子モデルでは、隣り合う2本の導 体バーと端絡環で1ターンのコイルを形成し、 ここを流れる渦電流より固定子に向かう回転 子起磁力を発生させるものとしてモデルの構 築を行っていた.しかし、回転子起磁力には他 の導体電流も影響を及ぼす可能性あり、これら を考慮した回転子起磁力の設定を行う必要が あると考えられる.

5.1 回転子起磁力の設定方法

回転子起磁力の設定方法に以下のアンペー ルの法則^[6]を用いて設定を行った.

$$\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \, d\vec{s} = I \quad (2)$$

ここで、 \vec{H} は磁場の強さ、 \vec{J} は電流密度、 $d\vec{l}$ は 微小長さ、 $d\vec{s}$ は微小面積、Iは電流である.

この法則を導体バーに流れる電流に対し積 分路を電流が貫くように設定し、各点の回転子 起磁力とした.

5.2 導体バーによる回転子起磁力

導体バーにおいて,手前から奥に向かって電 流が流れていると仮定し,エアギャップ付近の 断面図を図9に示し,導体バー44と導体バー1 に挟まれている点1における回転子起磁力を考 える.点1を挟み込む形で両側に2つの積分路 を設定した時,それぞれの電流に対する磁場が 右ねじの法則に従い発生する.ここで,固定子 及び回転子の磁心部における比透磁率は4000 と非常に高いため,エアギャップにのみ磁場が 集中すると考えられる.回転子から固定子に発 生する起磁力を正とした時の,点1における回 転子起磁力は以下の式が成り立つ.

$$MMF = \frac{I_{44}}{2} - \frac{I_1}{2} \tag{3}$$

ここで, *I*₄₄は導体バー44の電流値, *I*₁は導体 バー1の電流値である.

この回転子起磁力を回転子磁気回路の起磁 力源に適用し、モータ全体で回転子起磁力の設 定を行った.

図9 導体バーにおける回転子起磁力

5.3 積分路の最大領域について

コンデンサモータは4極構造のため,全周の 1/4 領域で完全に独立した磁束分布を持つため, 回転子起磁力でも同様な分布を持つことが分 かる.よって,導体電流の影響を及ぼす領域を, 全周の1/4領域である導体バー11本として考え る事が出来る.しかし,この領域では端の導体 バーの距離が遠く,アンペールの法則で無視し ていた磁心層で発生する磁場の減少を無視で きなくなる.

そこで図 10 に示すように積分路内の電流値 を減らすことにより,磁場の減少を模擬出来る と考えた.そこで,各点において左右対称な本 数で導体バー11本以下である,導体バー10本, 8本,6本,4本,2本を積分路が囲むモデルを 作成し解析精度の比較を行う.

図10 磁場の減少の模擬

6. 解析結果

解析には, Or CAD PSpice 16.0(ケイデンス・ デザイン・システム社)を使用し,印加電圧25[V], 周波数 50[Hz]で 50 周期を PC

(Intel®Core(TM)i7-2600CPU @3.4GHz
3.4GHz 16.0GB RAM)を用いて計算を行った.
また,解析対象には回転対称性があり,180度
で同じ磁束分布が現れることから,周方向に
1/2の領域の解析モデルを用いた.

積分路の領域を変化させたモデルでの各点 における回転子起磁力を図 11 に,各導体バー 電流の最大値を図 12 に示す.ここでコンデン サモータは 4 極構造で,全周の 1/4 領域で同様 な磁束分布が現れるため,回転子起磁力 11 点, 導体バー11 本で比較を行った.

図 11 において、従来の回転子起磁力のモデ ルと同様に点 6,7番で最小値となる、変化の 傾向は一致している.これは、固定子巻線が分 布巻となっているため、1番と 11番付近で固 定子から流入する磁束が最大となるため、その 影響により固定子回転子起磁力でも同様にこ のような変化の傾向が一致している.また、積 分路の導体バー電流を含める領域を徐々に減 らすことにより、回転子起磁力が徐々に低下し ていることが分かる.

図 11 回転子起磁力

次に図 12 において、従来のモデルと同様に 導体バー6番で最大値となっている.これは、 回転子起磁力同様に分布巻の影響によるもの だと考える事が出来る.また、導体バーを含め る領域を徐々に減らす事により、電流値が増加 していることが分かる.これは、固定子より磁 束が多く流入し、これに対抗する回転子電流が 増加するためだと考える.

各導体バー領域における主巻線電流と回転 子損失を以下の表3に示す.

主巻線電流では、積分路を電流が貫く電流の 本数を減らすことによって、電流値が低下して いる.また、導体バー8本を含める領域で積分 路を置いた時に、最も実験値と近い値となった. 回転子損失では本数を減らすことで徐々に損 失が減少し、導体バー6本を含める領域で最も 実験値に近い値となった.

表3 計算結果の比較

	Meas.	Previous	Bar 10	Bar 8	Bar 6	Bar 4	Bar 2
Input voltage [V]	25	25	25	25	25	25	25
Main winding current[A]	12.6	18.2	16.9	13.6	9.54	5.22	1.96
Rotor loss[W]	146	221	220	209	172	107	35

7. まとめ

本研究では,回転子拘束時における解析精度 向上を目指し,各回転子導体バーに対してアン ペールの法則を用いて回転子から発生する起 磁力の設定を行った.その結果,積分路の導体 バー電流を含める領域を変える事により,主巻 線電流及び回転子損失に変化が現れ,導体バー 8本を含める領域の時に主巻線電流が,導体バ ー6本を含める領域の時に回転子損失が最も実 験値に近い値となった.

しかし,主巻線電流と回転子損失の最も実験 値に近い領域が異なるため,モデルの改良を行 う必要があると考えられる.

謝辞 本研究の解析モデルの構築及び,実験デ ータの取得にご協力いただいた伊藤慶郎技術 職員に厚くお礼申し上げます.最後に,本研究 を遂行するにあたり,御協力及び御討論頂いた 本研究室の大学院,学部学生諸氏に深く感謝い たします.

参考文献

[1] 伊藤, 森永: "モータの高効率化", 日本 AEM 学会誌, Vol.7, No.3, pp269-272 (1999) [2]大嶋:"レアメタル資源確保の現状と課題", 立法と調査, No.311 (2010) [3] 田島, 佐藤: "磁気抵抗回路網解析を用いた コンデンサモータの一損失推定法",日本磁気 学会誌, Vol.34, No.3, pp.367-373 (2010) [4] 宮路,田島,谷口,佐藤: "磁性くさび適用 によるコンデンサモータの歯脈動損低減に関 する一考",日本応用磁気学会誌 27, pp.976-981 (2003) [5] 小笠原: "RNA によるコンデンサモータの 回転子損失の解析精度向上に関する研究",秋 田大学修士論文(2012) [6] 関根, 佐野: "電磁気学を理解する", 昭晃 堂(1996)