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Abstract—In this paper, we propose a novel and efficient
dictionary learning method for sparse representation of signals.
The proposed algorithm is based on the nonnegative matrix
factorization (NMF). We adopt the Itakura-Saito (IS) divergence
as the error function and impose /¢i-norm as the sparsity
constraint. The error function is quite different from conventional
dictionary learning methods using Euclidean (EUC) distance as
error function. Numerical experiments show that the proposed
algorithm performs better than the other three compared algo-
rithms which all use Euclidean distance as the error function.

1. INTRODUCTION

Amazing nonnegative matrix factorization (NMF)[1, 2],
which is a method for dimensionality reduction and data anal-
ysis [3], has attracted great attention over the past few years.
The NMF has found a wide variety of application, including
machine learning, image processing, blind source separation,
efc. Given such a representation Y € RTX", the NMF consists
in finding a factorization of the form Y =~ WH, where
W e RT” is termed as the base matrix, and H &€ RQX" is
termed as the coefficient matrix. The factorization is obtained
by minimizing error function D(Y,WH) between Y and
WH. For D(Y,W H), the Euclidean (EUC) distance and the
generalized Kullbank-Leibler (KL) divergence are often chosen
in the literature. People note that nonnegativity constraint could
lead to sparse representation which is attracting more and more
attention in recent years. The sparse representations, where
most coefficients are zero, are proven to be an interesting and
powerful tool for analysis and processing of signals. In the

model of sparse representation of signals, using an overcom-
plete dictionary matrix W € R™*" that contains r atoms of
size m x 1 for columns, signals Y € R™*" can be described
by sparse and efficient linear combinations of few atoms.
An overcomplete dictionary can lead to sparse representation
where overcomplete means m <r. Y = WH or Y ~ WH
are two ways to represent Y, where the H € R"*" is termed
as the coefficient matrix which contains the coefficients for
representation of signals Y. The popular EUC distance can be
chosen as the error function to measure the approximation error
between Y and WH, namely satisfying || Y — WH ||2< .

It is obvious and interesting that dictionary learning, build-
ing a dictionary consisting of atoms or subspaces so that a
class of signals can be efficiently and sparsely represented in
terms of the atoms, is an important topic. In recent practices
[4, 5], a learned dictionary has been proved to be critical
for achieving superior results in the field of signal and im-
age processing. On the other hand, in some applications the
nonnegativity of the signals and the dictionary are required,
such as the multilateral data analysis [6] and the nonnegative
factorization for recognition [7, 8]. These requirements call for
the dictionary learning method imposed with the nonnegativity,
namely, so-called nonnegative dictionary learning. Extensive
research in this field concentrates mainly on the study of
pursuit dictionary learning algorithms. To some extent, sparse
representation of nonnegative signals is similar to NMF in
the sense that it can increase interpretability and admitting
nonnegative combinations of the coefficient matrix can lead



to sparse results. Unfortunately, the degree of sparseness can
not be controlled and the results may not be enough if only
using the nonnegativity. In order to render a sparser represen-
tation, some kinds of sparsity-constrained NMF methods, with
different constraints imposed on the matrix factors, have been
proposed. Expansion speaking, £y-norm, #1-norm and /3-norm
constraint have been usually used as the sparsity constraints
[9-11]. Since the ¢y-norm optimization problem is generally
NP-hard, fortunately it can be replaced by ¢;-norm for the
convenience of optimization in the real-world applications.
Some authors also impose sparsity constraints by using ¢»-
norm constraint[12], because of the particularity of the sparse
NMF. The classical methods include NMFSC Hoyer proposed
[10] and NMF¢°-H [13]. And other classical algorithms is NN-
KSVD (nonnegative variant of K-SVD) algorithm [14, 17].
These algorithms all use the EUC distance as the measure of
approximation error. In addition, the KL divergence is also
used for the measure error[15].

In this paper, we propose using the IS divergence as the
measure of approximation error. This divergence is obtained
by Itakura-Satio [16] from the maximum likelihood (ML)
estimation. The divergence has good properties, in particular
scaleinvariant meaning that low energy components of input
signal bear the same relative importance as high energy ones.
And we use the /;-norm as sparsity constraint to reach the
sparsest representation for the coefficient matrix under the
condition of nonnegativity. Then we combine sparsity con-
straint with IS divergence into a novel algorithm. We used
multiplicative updating to develop an algorithm termed as IS
divergence with /;-norm sparsity constraint (ISSC). Gradient
multiplicative updating is an efficient way in this case, since it
can easily preserve nonnegativity constraint at each iteration.
Numerical experiments show that the proposed algorithm can
recover almost all aimed dictionary atoms from training data,
which is superior over the other algorithms including NMFSC,
NN-KSVD, and NMF/°-H.

The remaining part of paper is organized as follows. In
section II, we review the relationships between the IS diver-
gence and other error functions used in NMF, especially the
Euclidean distance and the generalized Kullback-Leibler (KL)
divergence. In section III, we describe proposed algorithm
ISSC. In Section IV we present the results of numerical
experiments for the proposed algorithm and compare these
results with those of several other algorithms. Finally, we give
the conclusion and discuss the future work.

2. PROBLEM FORMULATION

The NMF problem is formulated as follows. Given an input
matrix Y € ]RTX”, where each element is nonnegative. NMF
aims to find nonnegative matrices W € R"*" and H € R’*"
satisfying the condition of Y = WH or Y ~ WH, where
r < min(m, n). This problem can be formulated as the
minimization of an objective function,

min

D(Y|WH) (1)

subject to W € RT"™", H e R"

In order to complete the approximate factorization, we need
to define some error functions to measure quality of the
approximation error. Popular choices are the EUC distance
which can be defined as,

) 1
min Dpye(Y|WH) = 5||Y —~ WH||% )

and the generalized KL divergence, also termed as I-
divergence, can be defined as

\O
min D (YIWH) = Z (Yij log ——4—

(WH)M _Yij +(WH)ij)

3)

ij
1<i<m,1<j<n

Above two error functions are both nonnegative, and if Y =
‘WH the value equal to zero.

In this paper, we consider NMF under other error function
which is the IS divergence, whose expression is given by
(WH);;

min Drs(Y[WH) = Y (

1<i<m,1<53<n

_log o —1) (4)

The three mentioned error functions are the special cases
of [-divergence [18-20], which show that 5 = 2 is the case
of EUC distance, 8 = 1 is the case of KL divergence, and the
IS divergence is a limiting case when S = 0.

3. THE PROPOSED ALGORITHM

Although NMF yields sparseness for nonnegativity to some
extent, it is believed that much sparser representation can
be learned by imposing sparsity constraints on the matrix
factors. ¢g-norm, ¢1-norm and ¢,-norm constraint have been
usually used as the sparsity constraints. The £y-norm constraint
is the sparsest of the three. Unfortunately, solving the /q-
norm constraint optimization problem is generally NP-hard.
For solving this problem, one can replace {y-norm by /;-
norm constraint. In addition, some authors also impose sparsity
constraints by using ¢;-norm, because of the particularity of
the sparse NMF. However />-norm constraint is not sparser
than /p-norm and ¢;-norm constraint. In this paper, we adopt
{1-norm as sparsity constraint.

Combining the error function of the IS divergence with ¢;-
norm sparsity constraint, then we propose our problem as the
following optimization problem,

. - Y Y;
min D;s(Y[WH) = zj: ( W% (. D+A 1 H
&)

subject to W € R"™", H e R*"

where [[H||; means >, ;[H;;| and A > 0 is a regular-
ization parameter which can be adjusted for controlling the
tradeoff between the approximation error and the sparsity of
the coefficient matrix H. One can repeat experiments with
different values of A and determine which value for A is
optimal according to the output results.



For solving the constrained NMF problem, many algorithms
have been developed and most of them are structured with
iterative strategy, which utilize the fact that the problem can
be reduced into two sequential convex nonnegative problems
about W or H whereas the other of them is regarded as fixed
and known. The traditional multiplicative gradient descent
approach [1, 19] consists in updating each parameter by
multiplying its value at the previous iteration by a certain
coefficient, which can be computed by the following formulas,

0D(W,H)
Wi =W —pijj——F— (6)
1<i<m,1<53<r
0D(W,H)
Hij = Hij — tij——r— (N
j j I oH,,

1<i<r1<j<n

The gradients of criterion D;g(Y|WH) with regard to W
and H can be written as,

w ((WH)CVHET - (WH) 2 0 Y)HT)

+ A)ij

where ® and .(—2),.(—1) denote element-wise multiplication
and power. If we choose

o Wij
Pij = ((WH)'(_UHT)Z'J' (10)
Yi; = ! (1D

(WT(WH)- D 1)
Substituting (8),(9),(10),(11) into (6),(7), then the algorithm is
obtained as the following updates,

(((WH)H‘) ® Y)HT)

Voo W ((WH).H)HT)__ -w
ij
(W (wH)2))
Hij — Hzg 4
(WT(WH)-(*U + A)ij

(13)

Obviously, we can observe that the criterion is still nonin-
creasing under updates (12) and (13). In addition, the conver-
gence had been theoretically proven by the paper [21] based
on the expectation maximization (EM) algorithm.

According to the analysis above, the proposed IS divergence
with ¢;-norm sparsity constraint (ISSC) is summarized in
Algorithm 1.

Algorithm 1 ISSC

Require: Data Matrix Y € RT™"
1) Initialize W € R and H € R}*" as random non-
negative matrices;
2) Scale rows of H to sum to one;
Normalize columns of W to a unit £2-norm
3) Iterate until converge or stop;

[(WH) (-2 o Y|HT
(WH)-—DHT 1§
W [(WH) (2]
WT(WH)- (=D + X +6
§ = 10~ (overcoming the numerical instabilities)

4) Scale rows of H to sum to one and normalize columns
of W to a unit £*>-norm: Y7 ) wy; = 1,Vj.

W~ Wo

H+~Ho®

4. NUMERICAL EXPERIMENTS

Dictionary learning for sparse representation of signals has
been successfully applied in many areas, e.g. data classification

i; and image processing. Especially in the latter area, it has been
(8) applied for image denoising [22], image inpainting [23], image

compression [14, 24], and superresolution reconstruction [25],
etc. In this section, we made experiments by using ISSC
algorithm for synthetic signals, to test whether this algorithm
can recover the original dictionary and to compare its results

9) with other algorithms.

4.1Experiment on Synthetic Signals Generated with a Dictionary

For our experiments, we begun with generating a stochastic
nonnegative matrix W of size 20x50 with i.i.d. uniformly
distributed entries. Each column was normalized to the unit
¢?-norm. The stochastic matrix was referred to as the true
dictionary W, which was not used in the learning but only for
evaluation. Then we synthesized 1500 test signals of dimension
20, each of which was produced by a linear combination of
three different atoms in the true dictionary W. These test
signals are uniformly distributed i.i.d coefficients in random
and independent locations. We then synthesized 1500 test
signals Y of dimension 20, each of which was produced
by a linear combination of three different atoms in the true
dictionary, with three corresponding coefficients in random
and independent positions. The uniformly distributed noise of
varying signal-to-noise ratio (SNR) for performance analysis
of noise-robustness was added to the experiments.

4.2 Applying the ISSC

The initialized dictionary was composed of the signals
selected randomly from 1500 test signals. The corresponding
coefficients were initialized with random entries that were
ii.d. uniformly distributed and nonnegative. The maximum
number of iterations was set to 200. For ISSC, the sparsity
of the coefficient matrices was adjusted via the regularization
parameters A. The parameter A could be determined off-line
calibrating. We repeated the experiment with different A\ and



determined which value for A was optimal according to the
output results. In the our algorithm ISSC A\ was set to 0.015.
Then we executed ISSC on the test signals to estimate learned
‘W and evaluate its accuracy by comparing with the true W.

4.3 Comparison with the Other Algorithms

Since NN-KSVD, NMFSC and NMF/°-H were the three
state-in-art algorithms for nonnegative dictionary learning, we
compared our algorithm with these algorithms. We executed
NMFSC, NN-KSVD, NMF/%-H using the same test signals
with ISSC, respectively. Then it is easy to estimate learned W
and evaluate every accuracy by comparing with the true W.
For the three algorithms, the initialized dictionary matrices of
size 20x50 were composed of the randomly selected parts of
the test signals. Note that for NMFSC the corresponding coeffi-
cient matrices were initialized with i.i.d. uniformly distributed
random nonnegative entries. NN-KSVD and NMF/°-H did not
require a specified coefficient matrix, as they could generate
the corresponding coefficient matrix by sparse coding. The
implementation of NN-KSVD! algorithm is online available.
We executed the NN-KSVD algorithm for a total number of
200 iterations. Matlab code for NMFSC 2 and NMF/°-H?
algorithms are also online available. The learning procedure
with NMFSC was stopped after 3000 iterations because it
converged fairly slower than the other algorithms. And the
maximum number of iterations of NMF/’-H algorithm was
fairly set to 200. It was worth noting that, in the experiment,
NN-KSVD and NMF/°-H needed the specified exact number
of non-zero elements in the coefficient matrix (3/50=0.06 for
the case), while NMFSC was executed with a sparsity factor
of 0.85 on the coefficients.

4.4 Results of Experiment

The learned dictionaries were compared with the true gen-
erated dictionary. The comparisons were done as described
in [14] by sweeping through the columns of the true and
the learned dictionaries and finding the closest column (in
£2-norm distance) between the two dictionaries. A distance
less than 0.01 was considered as a success. All trials were
repeated 15 times. In the experiment, the ISSC algorithm
could recovery averaged 9.07%, 69.2%, 88.13% and 93.07%
atoms under the noise levels of 10 dB, 20 dB, 30 dB, and in
the noiseless case, respectively. For NN-KSVD could obtain
averaged 15.7%, 68.0%, 82.9% and 86.5%. While NMF/°-H
could recover 23.7%, 80.8%, 84.9% and 84.0% atoms under
the same conditions. For NMFSC, it recovered only averaged
0.4%, 13.5%, 38.4% and 49.3% atoms. The detailed results of
the experiment for these algorithms are shown in the Fig. 1.
The proposed ISSC performed best on dictionary learning in
levels of 30dB and noiseless case.

1Online available http://www.cs.technion.ac.il/ elad/software/
2Qnline available http://www.cs.helsinki.fi/u/phoyer/contact.html
30nline available http://www3.spsc.tugraz.at/people/robert-peharz
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Fig. 1. Experiment result when apply to the synthetic signal: for each of

the tested algorithms and for each noise level, 15 trials were performed and
their results were sorted. The averaged recovery rates of learned atoms and
corresponding deviation of recovery rates are displayed. A = 0.015

5. CONCLUSIONS

In this paper we have presented a novel and efficient
nonnegative dictionary learning algorithm which is obtained
by combining IS divergence as the error function and with
{1-norm as the sparsity constraint. Using IS divergence as
error function is quite distinguished comparing with the con-
ventional algorithms. Results of experiments on dictionary
recovery show that the ISSC algorithm can correctly learn
an overcomplete, nonnegative dictionary on synthetic signals
and further show that the proposed algorithm performs the
robustness against different level of noise in comparison with
the other compared algorithms which all using the EUC
distance as the error function. It implies that different error
functions lead to different results. In future work, we will
employ the proposed algorithm for inpainting, image denoising
and other application.
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