計測自動制御学会東北支部 第 285 回研究集会 (2013.12.7) 資料番号 285-5

緩みを有するコネクタの接触境界における

電流分布解析

An Analysis of Current Distribution at Loosened Connector Contact Boundary

○佐藤友哉,林優一,水木敬明, 曽根秀昭 ○Tomoya SATO, Yu-ichi HAYASHI, Takaaki MIZUKI, Hideaki SONE

東北大学

Tohoku University

キーワード: 電磁両立性 (Electromagnetic Compatibility), 接触不良 (Contact Failure), コネクタ (Connector), 迂回電流 (Bypass Current)

連絡先: 〒980-8578 宮城県仙台市青葉区荒巻字青葉6番3号 東北大学サイバーサイエンスセンター・本館・曽根・水木研究室

佐藤友哉, Tel.: (022)795-6094, Fax.: (022)795-6096, E-mail: b0tb2103@s.tohoku.ac.jp

1. はじめに

電子機器には電磁両立性 (Electromagnetic Compatibility; EMC) が求められており、機器のエミッション 及びイミュニティの規制値を定めた規格 が設けられている^{1,2)}。規格適合試験時に は個々の機器に対して評価が行われるが、 実際にユーザーが電子機器を利用する際 はコネクタを手締することで機器同士を 接続することが多く、接続に十分なトル クが加えられずに接触性能が低下する恐 れがある。このようにトルクが管理され ないコネクタの接触境界部では、抵抗値 やインダクタンス値が増大し接触不良が 発生する。さらにこうした接触不良部に 電流が流れることにより、電位差が生じ、 それを電圧源とする電磁放射が引き起こ される^{3,4}。特に接触不良部を流れる電流 が高周波化すると、接触不良部における インダクタンスの増大値が一定の場合で も、電磁波の放射強度が増大することが 明らかとなっており、接触境界部におけ るインダクタンス値増大のメカニズム解 明はその抑制を行う上で有益であると考 えられる。

インダクタンス値増大の要因として、 接触不良部における電流路長の増大が過 去において検討されているが⁵、電流路に 簡易化のための仮定が用いられており、 電流路長の変化に関する検討は十分にな されていない。

そこで、本稿ではインダクタンス値増 大の原因と言われる電流路長の変化の様 子を明らかにする。実験による電流分布 の観測は困難なため、接触不良部をモデ ル化し、時間領域差分法 (Finite-difference time-domain method; FDTD method)を用いた数値解析により 電流路長の変化を解析する。

2. コネクタ接触不良モデル

コネクタ部の接触面は Fig. 1 に示すよ うに、微細な凹凸により互いに接触して いる点と非接触な面が存在しており、接 触点に電流が流れる ⁶。十分なトルクが加 えられている場合は非常に多数の点が接 触しており (Fig.1 (a))、接触分布は境界 面全てにおいて面接触しているとみなせ るが、緩みなどによりトルクが不十分な 状態になると接触点数の減少に伴い接触 分布が変化し、接触面はまばらな点接触 となる (Fig.1 (b))。

過去の検討において、緩みによる接触 分布が変化した際の接触面を模擬した接 触不良モデルが提案されておりっ、本稿で もこれを用いる。Fig. 2 にモデルの形状 を示す。コネクタ部に十分なトルクが加 えられて緩みのない状態を4分の1間隔 で点接触している4 Pointsモデル、コネ クタ部の緩みにより外部導体に接触不良 が生じている状態を1 Point モデルを用 いて表す。1 Point モデルは、接触点が極 端に少ない場合を模擬したモデルとなっ ているが、本稿では、接触不良部での電

Fig. 1 Contact surface

Fig. 2 Contact failure models

流路長の変化を観測することを目的とす るため、変化の観測が容易な1Pointモデ ルを用いた。

3. シミュレーション

3.1 解析空間

本解析に用いた緩みが生じたコネクタ 部を有するケーブルの全体図を Fig. 3 に 示す。ケーブルの形状は同軸ケーブルを 想定して円筒形とした。ケーブルの両端 は完全導体を配置することで短絡し、ケ ーブル端の一方から電圧源として振幅 1 V、EMC 放射試験の上限周波数を想定し たカットオフ周波数 1 GHz のガウシアン パルスを印加することで伝送信号を発生 させ、外部導体を流れる電流とした。セ ルサイズは $\Delta x = 0.25$ mm, $\Delta y = \Delta z =$ 0.15 mmとし、吸収境界条件は良好な精度 を持つ PML を採用した。

ケーブル断面の形状を Fig. 4 に示す。 50Ωの同軸ケーブルをモデル化するため、

Fig. 3 FDTD simulation environment

Fig. 4 Cable cross section

中心導体の外径を 1.8 mm、外部導体の内 径を 6.3 mm とした。また、中心導体、 外部導体として銅(導電率 5.8× 10⁷ S/m)、誘電体として高密度ポリエチ レン(比誘電率 2.3)を用いた。

接触不良部について、接触点の大きさ を1 セルとし、接触点の位置から外部導 体をX 軸方向に伸長して両ケーブルの外 部導体と一続きにすることで点接触を再 現した。また、非接触面は外部導体を配 置せず、誘電体を配置することで再現し た。

3.2 シミュレーション結果

電圧源としてパルス波を印加した際の 各モデルの接触点における電流量の時間 変化を解析した。また、1 Point モデルに ついて、接触境界面における X 軸方向の 磁界分布と接触境界面から電圧源の方向 に向かって 2.5 mm 離れた位置における X 軸方向の磁界分布を解析した。

4 Points モデルの接触点 a1 (Fig. 2 (a)) と1 Point モデルの接触点 b1 (Fig. 2 (b)) の各接触点における電流量の時間変化 を Fig. 5 に示す。接触点 b1 では接触点 a1 に比べて電流量が増大し、ピークに達 するまでの時間が長くなった。

続いて、1 Point モデルの接触境界面に おける磁界分布として、励振パルスが接 触境界部に到達する時間である 0.684 ns と、到達後となる 0.912 ns における X 軸 方向の磁界分布を Fig. 6 に示す。また、 接触境界面から 2.5 mm 離れた位置にお ける 0.684 ns, 0.912 ns における X 軸方 向の磁界分布を Fig. 7 に示す。パルス波 が接触境界面に到達した後(Fig. 6 (a)) は接触境界面上で X 軸方向の磁界が発生 し始めるが、この時は接触境界面の手前 では X 軸方向の磁界は存在しない (Fig. 7(a))。時間経過により接触境界面上にお ける X 軸方向の磁界が大きく分布するよ うになると(Fig. 6 (b))、接触境界面の手 前でもX軸方向の磁界が観測された (Fig. $7 (b))_{\circ}$

Fig. 5 Current density at the contact point

(b) 0.684 ns

(a) 0.912 ns

Fig. 7 Magnetic field distribution at 2.5 mm away from the contact surface

4. 電流路長の変化に関する考察

Fig. 5 の結果より、1 Point モデルにお ける接触点 b1 では 4 Point モデルの接触 点 a1 に比べて電流量が変化し、ピークに 達するまでの時間が長くなったことから、 電流の迂回が生じたと考えられる。

続いて、1 Point モデルの X 軸方向の磁 界分布を解析した結果、Fig. 6 (a), (b) に おいて X 軸方向の磁界が増大しているこ とが観測された。一般に同軸ケーブル内 部において、磁界は Y, Z 軸方向のみに生 じ、X 軸方向には生じない。そのため、X 軸方向に磁界が発生した場合、周方向に 電流が発生したこととなり、これが電流 路長を増加させている要因であることが わかる。また、Fig. 6 (a), Fig. 7 (a) を比 較すると同一時刻において接触境界面に は X 軸方向の磁界が存在し、接触境界面 の手前には X 軸方向の磁界が存在してい ない。この結果より、外部導体を流れる 電流が初めて接触境界面に達するまで周 方向の電流は発生しないことがわかる。 接触境界面よりも手前では Fig. 7 (a), (b) より、時間経過により X 軸方向の磁界が 発生するため、接触境界面において初め に X 軸方向の磁界が生じ、時間経過とと もに接触境界面から離れた位置でも X 軸 方向の磁界が発生しており、接触境界面 から離れた位置でも電流の迂回が生じて いることがわかる。従って、迂回電流が 発生する区間が存在し、この区間内での 電流路長の増大によってインダクタンス 値が増加すると言える。

5. 結論

本稿では、接触不良により生ずるイン ダクタンス値の増加を、電流路長の変化 としてとらえ、その変化の様子について FDTD 法を用いて解析した。その結果、 接触不良を有するコネクタの接触境界面 において、電流は接触点に向かって周方 向に迂回していることを示す電流量の増 大とX軸方向の磁界が観測された。さら に、X 軸方向の磁界は接触境界面におい て初めに生じ、時間経過により接触境界 面から離れた位置でも発生するという現 象が観測された。これにより、迂回電流 は一定の区間で発生し、この区間におけ る迂回電流による電流路長の増大がイン ダクタンス値の増大を引き起こす要因で あることを明らかにした。

今後の課題として、迂回電流が発生す る区間の定量解析や電流路長の変化によ るインダクタンス値の変化を解析するこ とが挙げられる。

文献

- 1) Voluntary Control Council for Information Technology Equipment (VCCI), http://www.vcci.jp
- Federal Communications Commission (FCC), http://www.fcc.gov
- Y. Hayashi, T. Mizuki and H. Sone: Analysis of Electromagnetic Radiation from Transmission Line with Loose Contact of Connector, IEICE Trans. Electronics, vol.E94-C, no.9, 1369/1374 (2011)

- 4) 松田和樹,林優一,水木敬明,曽根秀昭: コネクタの 緩みによる放射電磁雑音増大のメカニズムに関す る一検討,電気学会論文誌 A, vol. 132, no. 5, 373/378 (2012)
- K. Matsuda, Y. Hayashi, T. Mizuki and H. Sone: Mechanism of Increase in Inductance at Loosened Connector Contact Boundary, IEICE Trans. Electronics, vol.E95-C, no.9, 1502/1507 (2012)
- Greenwood, J. A.: Constriction resistance and the real area of contact, British Journal of Applied Physics 17.12, 1621 (1966)
- 7) Y. Hayashi and H. Sone: Fundamental Measurement of Electromagnetic Field Radiated from a Coaxial Transmission Line Caused by Connector Contact Failure, IEICE Trans. Electron., vol. E91-C, no.8, 1306/1312 (2008)