計測自動制御学会東北支部 第 285 回研究集会 (2013.12.7) 資料番号 285-8

湖沼調査用モジュール構造型小型水中ロボットの開発 -不撹乱柱状採泥モジュールの開発-

Development of a small and modular UROV for environmental surveying -Development of an undisturbed soil core sampling module-

○鷹箸修平*, 高橋隆行*

Shuhei TAKANOHASHI*, Takayuki TAKAHASHI*

*福島大学

*Fukushima University

キーワード: 水中ロボット (Underwater Robot), モジュール構造 (Modular Strusture), 柱状採泥 (Soil Core Sampling)

連絡先: 〒 960-1296 福島県福島市金谷川1 福島大学 共生システム理工学類 高橋研究室 Tel./Fax.:024-548-5259, E-mail:shuhei@rb.sss.fukushima-u.ac.jp

1. 緒 言

福島県には磐梯朝日国立公園に指定されてい る磐梯吾妻・猪苗代地域に,猪苗代湖,檜原湖 をはじめとした多くの湖沼が存在している.こ れらの湖沼の環境調査では海洋での調査と異な り大型の船舶及び機器の運用が困難であるため, 人が小型の船舶及び機器を用いて多大な労力を かけて調査を行っているのが現状である.

また,2011年の東日本大震災に伴い発生した 福島第一原子力発電所の事故により放出された 放射性物質が川底や湖底に堆積していることが わかっている.2012年12月から2013年3月に かけて「いであ株式会社」によって行われた調査 では猪苗代湖への河川流入部でセシウム137が 4.3~5400[Bq/kg],湖底部では42~110[Bq/kg] が検出されている¹⁾.これら湖底放射線量の調 査結果を元に放射能濃度のマッピングを行うこ とは、湖沼への河川流入が放射性物質の堆積へ 与える影響や水環境中での線暈の推移を把握す るのに重要であると考えられる、しかし、現在 の湖底の採泥調査は船上から採泥器の投下また は潜水士による潜水での採泥によって行われて おり、調査地点の位置情報の精度が低いことや 調査可能な深度に制限があることが問題となっ ている.また、これらの調査は継続的かつ長期 間に亘って行う必要があり、前述のような人力 に依存する調査は人間への負担が増加してしま う. これらの問題を考慮し. 詳細な放射能濃度 マップを作製するには、水中ロボットを用いる ことが有効であると考えられる.近年、環境調 査を行う水中ロボットとして、 浦らが開発した 自立型水中ロボット「淡探」2)や、坂上らが開 発した「湖虎」3) などが開発、運用されている.

Fig. 1 Prototype of proposed underwater robot

筆者らは水中ロボットの大きさと機能の関係に 注目し, Fig.1 に示すモジュール構造型小型水中 ロボットの開発を行っている.

本研究では,底質における放射性物質動態を 詳細に検討するために,不撹乱柱状採泥の開発 を行う.柱状採泥は湖底土壌の層構造を破壊せ ずにサンプリングが可能という利点がある一方 で,地中に貫入させた採泥管が土からの圧力な どの影響によって抜去不可能になり,水中ロボッ ト自体が回収不能に陥る危険性がある.そこで, 本研究では上記の危険性を考慮し,アンカード リルを地中に貫入することで水中ロボット本体 を固定する手法を提案する.

2. モジュール構造型小型水中ロボ ットの概要

本研究で開発する水中ロボットの概要を示す. 本水中ロボットは各機能ごとにモジュール化され れいるため、モジュールを交換することによって 調査目的に応じた機能の追加、削除が可能であ る.そのため、ロボット本体が大型化することを 抑えつつ多くの調査項目に対応することができ る.なお、本水中ロボットはフレームにモジュー ルを固定することができるフレーム構造型を採 用した.また、本水中ロボットは動力源を内蔵し た遠隔操作型水中ロボットである UROV(Untethered Remotely Operated Vehicle)形式となっ ている.電源を内蔵することにより電源供給のた めのケーブルが不要となり、ケーブルを細径な情 報伝送用の光ファイバのみにすることができる ため水中ロボットの運動性能を向上させることが 可能となる.ロボット全体の大きさはH640[mm] ×W550[mm] × D740[mm] であり,オプション のモジュールを取り付けていない基本的な状態 での空中重量は31[kg] である.また,本水中ロ ボットは猪苗代湖最深部の水深 93.5[m]⁴) での 使用を想定しており,これを上回る水深 100[m] に相当する水圧の 1.0[MPa] に耐えることが可 能な耐圧性能を有する.

2.1 モジュールの種類

本水中ロボットは Fig.2 に示す構造になって おり,搭載するモジュールは大きく以下の3種 類に分類される.

- メインモジュール
- スラスタモジュール
- サンプリングモジュール

各モジュールは個別に電源, 無線通信装置, 制 御用 CPU を内蔵しており, モジュール間は完 全にワイヤレス化されている. 無線通信を使用 することより耐圧容器にケーブル貫通用の孔を 空ける必要がなくなるため, 浸水のリスクを低 減することができる. さらに, モジュール交換 の際の複雑な配線作業が不要になるため調査内 容に応じたモジュール交換が容易であり, 柔軟 性の高い運用が可能となる.

2.1.1 メインモジュール

Fig.3 及び Table 1 に当研究室にて開発された メインモジュール及びその仕様を示す⁵⁾.本モ ジュールは全長 517[mm],空中重量 9.9[kg] であ り,母船のメインコンピュータと相互に情報を 伝送するための光ファイバが接続されている.

Fig. 2 Block diagram of proposed underwater robot

Fig. 3 Prototype of the main module

2.1.2 スラスタモジュール

Fig.4 及び Table 2 に当研究室で開発された スラスタモジュール及びその仕様を示す⁶⁾.本 モジュールは全長 364[mm],空中重量 1.9[kg], 水中重量 0.4[kg] であり,最大静止時推力 14[N], 連続稼働時間は 2 時間である.本水中ロボット には垂直方向に推力を発生するものが 4 機と水 平方向に推力を発生するものが 2 機の計 6 機を 搭載する.

Fig. 4 Prototype of the thruster module

Table	1 S	pecifica	tions of	f main	module
	~ ~	poomoa			mound

Item	Unit	Value
Length	[mm]	517
Outer diameter	[mm]	210
Weight(in air)	[kg]	9.9

Item	Unit	Value
Length	[mm]	364
Outer diameter	[mm]	99
Weight(in air)	[kg]	1.9
Weight(in fresh water)	[kg]	0.4
Max.Thrust	[N]	14

2.1.3 サンプリングモジュール

本水中ロボットは水や泥を回収するためのサ ンプリングモジュールを搭載する.本論文では 泥を回収するための機構(以下,採泥モジュー ルと呼ぶ)の開発に関わる基礎的項目の検討を 行った.詳細については第3章で述べる.

不撹乱柱状採泥モジュールの開 発

採泥モジュールの開発を行うにあたり,第一 段階として採泥方法及びそれらに関連する項目 の検討を行った.

3.1 採泥方法

海洋および湖沼の底質調査で一般的に用いら れる採泥法には以下の3通りの方法がある.

- 1) ドレッジ式 (引っかき取り)
- 2) グラブ式 (つかみ取り)
- 3) 柱状式

これらはそれぞれ、ドレッジ式が表層付近の試 料を線状に、グラブ式が点状に、柱状式が垂直 下方の試料を採取するものである⁷⁾. 放射性物 質の調査においては湖底表層の浮泥を撹乱せず に採取することが重要であるため¹⁾,柱状式の 採泥方法を採用した.

3.2 採泥の流れ

本論文で提案する採泥法は、地中に貫入させ た採泥管が土からの圧力などの影響によって抜 去不可能になり、水中ロボット自体が回収不能 に陥る危険を回避して不撹乱柱状採泥を行うこ とを目的としている.その具体的な手法は以下 の通りである.

- 1) 潜航·着底
- 2) 着底後、アンカードリルを湖底に貫入さ せロボットを固定
- 3) 採泥管を湖底に貫入, 採泥を実行
- 4) **採泥管を抜去**
- 5) アンカードリルを抜去
- 6) 浮上

水中ロボットが中性浮量であるとき,採泥管 の貫入・抜去に際してスラスタの推力を使用す る手法が考えられる.しかし,本水中ロボット のスラスタ推力では採泥管を貫入・抜去するには 不十分であることが当研究室の実験から分かっ ている.しかしながら水中ロボットが湖底に固 定されている状態であるならば,採泥モジュー ルに十分な力を発生させられるアクチュエータ を使用することによって,採泥管の貫入・抜去 を行うことが可能であると考えられる.

3.3 アンカードリルの設計

本論文で提案する水中ロボットは,採泥の際, 湖底でロボットを固定するためにアンカードリ ルを用いる. このアンカードリルは, 採泥に必 要な貫入力に耐えてロボットを湖底に保持する 必要がある. 簡単には, 採泥管の貫入に必要な 力よりも, アンカードリル上部に存在する泥の 質量が大きければ採泥時にアンカードリルが抜 けることはないと考えられる.

この条件を満足するアンカードリルの外径を, 以下の式 (1) を用いて求めた.

$$M \times k = \frac{\pi h \rho}{4} (D_1^2 - D_2^2)$$
 (1)

式 (1) におけるパラメータの定義を Table 3 に示す.

Table 3Variables and parameters of equa-
tion(1)

Symbol	Unit	Value	Recital
М	[kg]	-	Mass of mud
k	[1,2,3]		Number of anchors
D_1	[m]		Anchor diameter
D_2	[m]	0.01	Anchor post siameter
h	[m]	0.3	Intrusion of anchor
ρ	$[kg/m^3]$	2.4×10^{3}	Mud density

なお、用いた計算式 (1) では泥の粘性や摩擦力 については考慮していない. D_2 , hついては実験 器具の関係から決定し、 ρ は猪苗代湖の湖底 (水 深 50[m] 付近) で 2.4~2.6×10³[kg/m³]、河川流 入部で 2.4~3.0×10³[kg/m³] という値¹⁾ から決 定した.本研究室で行った予備実験の結果から、 採泥管の貫入力を 5.0[kgf] と仮定すると、 D_1 を 80[mm], $k \approx 2$ [本] とした際に M は 7.13[kg] と なり理論上は採泥によってアンカードリルが抜 けることはないと考えられる.そのため、アン カードリルの外径を 80[mm] として試作し、性 能試験を行った.

3.4 アンカードリル性能評価

試作したアンカードリルを Fig.5 とそれらの 仕様を Table 4 に示す.

それぞれピッチと外径が異なっており,パラ メータの違いによる特性の比較を行った.計測 を行った項目は以下の通りである.

Fig. 5 Prototype of the anchor drills

 Table 4
 Specifications of anchor drills

Num.	O.D.[mm]	Pitch[mm]
1	80	30
2	80	50
3	50	30
4	50	50

- 1) 鉛直保持力
- 2) 回転貫入トルク
- 3) 回転抜去トルク

なお、今回の計測には水田の土を使用した. これは環境調査の専門家から頂いた意見を元にしており、土の密度は猪苗代湖の湖底土の密度である 2.4×10³[kg/m³] に近づけるように水分調 整を行った.

3.4.1 鉛直保持力の計測

アンカードリルを泥に貫入させた状態から鉛 直に抜去する際に必要な力の計測を行った.計 測は項目ごとに各3回行い平均を算出した.結 果を Table 5 に示す.結果から,アンカードリ ルの泥への貫入量は100[mm]であっても充分に 貫入力 5.0[kgf]を保持することが可能であるこ とが分かった.また,アンカードリルのピッチ の変化による保持力の違いは見られなかったが, 外径の変化によって保持力が向上することが確 認された.

Table 5Experimental results of verticalholding force

	(Di	ameter[m	m],Pitch{n	1m])
Intrusion of anchor [mm]	(80,30)	(80,50)	(50,30)	(50,50)
100	15.4	14.0	8.3	7.5
200	18.4	14.5	8.8	9.2
300	18.3	18.1	12.1	11.9
				unit:kgf

Table 6	Experimental	$\mathbf{results}$	of	rotary	in-
trusion to	rque				

** ***	(Diameter[mm],Pitch[mm])				
	(80,30) (80,50) (50,30) (50,50)				
Torque[Nm]	0.88	0.98	0.39	0.39	

3.4.2 回転貫入トルクの計測

アンカードリルの貫入に必要なトルクの計測 を行った.貫入量は鉛直保持力の計測結果から 100[mm]とした.計測結果をTable 6に示す.結 果から、外径が大きくなると貫入に必要なトル クが増加することが確認された.また、ピッチ については外径ほどではないが、増大に伴い必 要なトルクは増す傾向にあることが確認された.

3.4.3 回転抜去トルクの計測

貫入させたアンカードリルの抜去に必要なト ルクの計測を行った.計測結果を Table 7 に示 す.貫入トルクと同様に,ピッチ及び外径が大 きくなると抜去に必要なトルクが増加する傾向 にあった.また,貫入トルクと比較して抜去に 必要なトルクの値が大きいことが確認された.

Table 7Experimental results of rotary re-move torque measuring

	(Diameter[mm],Pitch[mm])				
	(80,30) (80,50) (50,30) (50,50)				
Torque[Nm]	0.88	1.27	0.59	0.69	

Table 8	Specifications	of pipes

Num.	O.D. [mm]	Thickness[mm]	Taper
1	60	2	
2	60	4.5	
3	60	4.5	0
4	48	2	
5	48	4	
6	48	4	0
7	32	3.5	
8	32	3.5	0

Table 9	Experimental	results	of	vartical	in-
trusion for	ce				

	Outside diameter[mm]			
thickness[mm]	32	48	60	
2	-	9	10	
4	6	10	10	
sharp edge	6	9	10	

3.5 採泥管の検討

柱状採泥を行う採泥管について,以下の項目 についての検討を行った.

- 1) 鉛直貫入力
- 2) 鉛直抜去力

3) 採泥管の径と試料の乱れの関係

3.5.1 鉛直貫入力の計測

Table 8に示す形状の異なる 8種のパイプを用 いて,鉛直貫入させる際に必要な荷重と,一定 荷重を付加した際の応答を計測した.なお,貫 入量については,実際の採泥を想定し 300[mm] とした.結果を Table 9 に示す.鉛直貫入させ るために必要な荷重はパイプの外径によってほ ぼ一定であることが確認され,実験に用いた中 で外径が最大の 60[mm] のパイプでは 10[kg] の 荷重が必要であることが確認された.

3.5.2 **鉛直抜去力の計測**

鉛直貫入力を計測した際と同様のパイプを用 いて 300[mm] 貫入時の鉛直抜去力の計測を行っ た. 結果を Table12 に示す. 抜去力についても

 Table 10
 Experimental results of vartical intrusion force

Num. of pipes	Intrusion force[kgf]
1	10
2	10
3	10
4	9
5	10
6	9
7	6
8	6

Table 11	Experimental results of vartical ex	x-
traction for	rce	

Mum of sizes	Entrantion for college
Num. of pipes	Extraction force[kgf]
1	16.4
2	14.8
3	17.2
4	12.2
5	12.6
6	12.6
7	7.1
8	7.3

貫入力と同様にパイプの外径によってほぼ一定 であることが確認された.また,貫入力と比較 すると,すべての場合において抜去力の方が大 きな値となった.

Table 12Test result of vartical intsusionforce measuring

	Outside diameter[mm]		
thickness[mm]	32	48	60
2	-	12. 2	16. 4
4	7.1	7.3	14. 8
sharp edge	7.3	12.6	17. 2

3.5.3 採泥管の径と試料の乱れの関係の検討

貫入力および抜去力の計測実験と同様のパイ プを用いて、パイプ内にサンプリングされた試料 の層構造が破壊されていないか確認する実験を 行った. 泥と色砂を用いて実験用の層構造を持っ た土を作製した後、そこにパイプを約 300[mm] 貫入、サンプリングを行った. サンプリング後 はパイプごと試料を冷凍し、試料を取り出した 後に軸方向に切断して断面を確認した. 確認し

Fig. 6 Schematic diagram of colored

Fig. 7 Sample of undisturbed soil core sampling

た断面の一例を Fig. ??に示す.内径 56[mm], 44[mm] のパイプでは 3 層の色砂層を確認する ことができたが,内径 22[mm] のパイプでは 1 層のみの確認となった.また,いずれの径にお いてもパイプ内壁との境界面で試料の乱れがあ り,内径 22[mm] のパイプではその影響が大き かった.

3.6 アンカードリル及び採泥管の設計方針

今回行った各実験のそれぞれの結果を元に,ア ンカードリル及び採泥管の仕様について検討し た.アンカーを2本使用した際のアンカードリ ルの鉛直保持力と採泥管の鉛直貫入力から検討 すると,今回使用したいずれのアンカードリル, 採泥管の組み合わせも可能であることが分かっ た.そのため,貫入および抜去の際のトルクが もっとも小さい外径50[mm],ピッチ30[mm]の アンカードリルを使用することが,安全面から 考えて最適であると考えられる.また,採泥管 は試料が乱れない最小の径のものを使用するこ とがリスク回避につながると考えられるので, 外径 22~48[mm] の間で最適なものをさらに検 討する.

4. 結 言

本論文では筆者らが開発を行っている水中ロ ボットの不撹乱柱状採泥モジュールに関する基 礎的検討について述べた.採泥の手法として, アンカードリルを用いてロボットを固定した状 態で柱状採泥を行う手法を提案した.アンカー ドリルの試作および性能試験を行い,採泥管の 鉛直貫入の際に,ロボットを固定することので きる保持力を発生できることを確認した.また, 採泥管の径についても検討を行い,内径44[mm] 以上のパイプを使用することで不撹乱での採泥 が可能であることを確認した.また,それらを 動作させるために必要な動力源も,筆者らが開 発中の水中ロボットに搭載可能なレベルである ことを確認している。

今後は本水中ロボットを用いて実際に湖底で の不撹乱柱状採泥を行うことができるよう,採 泥モジュールの試作・改良,採泥に関わるシス テムの開発を行う予定である.

参考文献

- いであ株式会社,平成24年度水環境中の放射 性物質調査方法等検討業務報告書
- 浦環:自立型海中ロボットの発展する方向, Journal of Geography, 109(6), pp900/906, (2000)
- 3) 坂上憲光:水中ロボットマニピュレータの動作時 における浮心移動機構を利用した本体姿勢保証, 日本機械学会ロボティクス・メカトロニクス講 演会2010,1P1-D26
- 国土地理院猪苗代湖, http://www1.gsi.go.jp/geowww/themap/ lake/tohoku-inawashiroko.html, 2013.12.4
- 5) 猿田祐平,大室拓哉,高橋隆行:湖沼調査用モジュール構造型小型水中ロボットの開発-試作機の開発と水中での基本動作の確認-,計測自動制御学会システムインテグレーション部門 講演会 SI2012, 3K2-3

- 6) 大室拓哉, 猿田祐平, 高橋隆行:低雑音ワイヤレ ススラスタモジュールの開発, 日本機械学会 ロ ボティクス・メカトロニクス講演会 2012, 2P1-H10
- (7) 青木市太郎,木下泰正:汚染底質調査のために開発した採泥器,独立行政法人産業技術総合研究所地質調査総合センター https://www.gsj.jp/data/chishitsunews/ 79_04_02.pdf,2013.12.5
- 8) 地質環境部主任技術者講習会 第3回 土質定数 その1, http://www.pejp.net/academy/academy03.pdf, 2013.12.6