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Abstract: The channel estimation is one of important 

techniques to ensure reliable broadband signal 

transmission. Broadband channels are often modeled as 

a sparse channel. Comparing with traditional dense-

assumption based linear channel estimation methods, e.g., 

least mean square/fourth (LMS/F) algorithm, exploiting 

sparse structure information can get extra performance 

gain. By introducing   -norm penalty, two sparse LMS/F 

algorithms, (zero-attracting LMSF, ZA-LMS/F and 

reweighted ZA-LMSF, RZA-LMSF), have been proposed 

[1]. Motivated by existing reweighted   -norm (RL1) 

sparse algorithm in compressive sensing [2], we propose 

an improved channel estimation method using RL1 

sparse penalized LMS/F (RL1-LMS/F) algorithm to 

exploit more efficient sparse structure information. First, 

updating equation of RL1-LMS/F is derived. Second, we 

compare their sparse penalize strength via figure 

example. Finally, computer simulation results are given 

to validate the superiority of proposed method over than 

conventional two methods. 

1. Introduction  

Recently, the wireless broadband transmission is 

becoming more and more important [3], [4]. The 

broadband signal is significantly distorted by 

frequency-selective fading and hence, some powerful 

equalization techniques need to be adopted. Any 

equalization technique requires accurate channel state 

information. Based on the assumption of dense finite 

impulse response (FIR), traditional linear channel 

estimation methods, e.g. standard least mean 

square/fourth (LMS/F) algorithm [5] have been 

proposed. However, FIR of real channel is often 

modeled as sparse and many of channel coefficients 

are zero. Because the relative longer discrete channel 

is sampled with higher sampling frequency (due to 

broader baseband transmission) according to the 

Nyquist-Shannon sampling theory while the 

significant channel coefficients are very few [6]. For a 

better understanding the concept of sparse channel, we 

give a figure example to introduce intuitively the 

relationship between number of channel taps and 

sampling frequency (bandwidth) in Fig. 1. Considering 

any N-length channel vector [ , , , ]TNw w w w 0 1 1 , 

sparseness of channel vector w  can be measured [7] 

by  

 ( ) ,
N

N N N
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where  w
1

 and w
2

  stands for 1  norm and 2  

norm of w , respectively, i.e., ii
ww

1
  and 
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ii
w w 2

2
. Larger value of ( ) w  implies 

sparser channel and vice versa. For example, 

sparseness of ( )d w 1 for [ , ,..., ]Td w 1 0 0  while 

( )u w 0  for [ , ,..., ]Tu w 1 1 1 . According to above 

sparseness measure function in (1), we simple classify 

either dense or sparse structure channels also classified 

in Tab. I. 

 
 

TAB. I. CHANNEL STRUTURES WITH RESPECT TO DIFFERENT 

BANDWIDTH. 

Transmission 

bandwidth 

5MHz 10MHz 50MHz 100M

Hz 

Channel delay 

spread 

      

No. channel taps 5 10 50 100 

No. nonzero 

channel taps 

5 5 5 5 

Channel 

distribution 

uniform 

Channel 

sparseness  

0 0.4283 0.7964 0.8427 

Channel structure dense Quasi-

sparse 

sparse sparse 

 

 

 

 

Fig. 1. Number of channel taps relates to baseband transmission 

bandwidth. 

 

 

To deal with the sparse problems, adaptive sparse 

channel estimation methods have been proposed to 

achieve performance gain by exploiting inherent 

channel sparse structure information [1], [8]–[11]. In 

these state-of-the-art methods, zero-attracting (ZA-

LMS/F) and reweighted ZA-LMS/F (RZA-LMS/F) [1] 

have been validated as one of effective methods with 

1  norm sparse constraint. Either zero-attracting (ZA) 

or reweighted ZA (RZA), sparse constraint ability is 

limited due to the fact that 1  norm sparse solution. It 

is well known that 1  norm solution  is only a 

suboptimal solution where exists an obvious 

performance gap to the optimal solution [12]. Please 

notice that finding the optimal solution is a NP hard 

problem [12]. Hence, more effective sparse 

approximation can reduce the performance gap. In [2], 

E. Candes proposed an improved sparse solution by 

using reweighted 1  norm (RL1) sparse function. 

Motivated by this work, we propose an improved 

sparse LMS/F algorithm by introducing the RL1 to 

standard LMS/F. First of all, we derive the updating 

equation of RL1-LMS/F algorithm and the sparse 

penalty strength of different sparse functions is 

compared as well. Later, computer simulation 

examples are given to verify our propose method. 

Section 2 introduces system model and reviews 

conventional sparse LMS/F algorithms. In Section 3, 

an improved sparse LMS/F based channel estimation 

methods is proposed. In section 4, computer 

simulation results are given and their performance 

comparisons are also discussed. Concluding remarks 

are resented in Section 5. 

2. Overview of conventional sparse LMS/F 

algorithms 

Considering a FIR based broadband wireless 

communication system, the input signal vector ( )kx  

and output signal ( )d k  are related by 

 ( ) ( ) ( ),Td k k z k w x                (2) 

where [ , ,..., ]TNw w w w 0 1 1 is a N-length unknown 

FIR channel vector which is supported only by K  

significant coefficients ( K N ); ( )kx is a N-length 

input signal vector ( ) [ ( ),..., ( )]Tk x k x k N  x 1  and 

( )z k  is an additive Gaussian noise variable satisfying 

( , )n
20   . The object of adaptive sparse channel 

estimation is to probe the unknown FIR channel vector 

w  with ( )kx  and ( )d k . According to Eq. (2), channel 

estimation error ( )e n  is:  

 ( ) ( ) ( ) ( ),Te k d k k k w x              (3) 

where ( )kw  is assumed as ZA-LMS/F channel 

estimate. Based on Eq. (3), cost function of ZA-

LMS/F [1] can be written as 

  ( ) ( ) ln ( ) ( ) .ZA ZA

SparsityEstimation error

G k e k e k k      w2 2
1

1 1

2 2
  

 (4) 

where   is an user setting positive parameter; ZA  is 

a regularization parameter to balance the estimation 

error and sparsity of ( )kw
1

; sgn( )  is the sign 

function which operates on every component of the 

vector separately and it is zero for x  0 , 1  for x  0   

and 1 for x  0 . Hence, the update equation of ZA-

LMS/F adaptive channel estimation is derived by  
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where ZA ZA  ; max( , )  0 2  is a step size of 

gradient descend step-size and max  is the maximum 

eigenvalue of the covariance matrix of ( )kx . The cost 

function of RZA-LMS/F is written as 
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where RZA  0  is a regularization parameter as well 

to balance the estimation error and sparsity of 

 log
N

ii
w 






1

0
1 . The corresponding updating 

equation is 
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where RZA RZA    is a parameter which depends 

on step-size  , regularization parameter RZA  and 

threshold  . Here, reweighted factor is set as   20  

[1] to exploit channel sparsity efficiently. In the 

second term of (7), please notice that estimated 

channel coefficients ,  , , ,iw i N 0 1 1 are 

replaced by zeroes in high probability if under the hard 

threshold 1 . Hence, one can find that RZA-LMS/F 

can exploit sparsity and mitigate noise interference 

simultaneously.   

3. Improved adaptive sparse channel estimation 

using RL1-LMS/F algorithm 

  The reweighted 1  norm minimization for sparse 

channel estimation has a better performance than the 

standard 1  norm minimization that is usually 

employed in compressive sensing [2]. It is due to the 

fact that a properly reweighted 1  norm approximates 

the 0  norm, which actually needs to be minimized, 

better than 1  norm. Therefore, one approach to 

enforce the sparsity of the solution for the sparsity-

aware LMS/F-type algorithms is to introduce the 

reweighted 1  norm penalty term in thee cost function. 

Our reweighted 1  norm penalized LMS/F algorithm 

considers a penalty term proportional to the 

reweighted 1  norm of the coefficient vector. The 

corresponding cost function can be written as 

 
 

( ) ( ) ln ( ) ( ) ( ) ,RL RL

SparsityEstimation error

G k e k e k k k      f w2 2
1 1 1

1 1

2 2

 (8) 

where RL 1  is the weight associated with the penalty 

term and elements of the N1  row vector ( )kw  are 

set to 

 [ ( )] ,  , , , ,
[ ( )]
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where   being some positive number and hence 

[ ( )]ik f 0  for , ,...,i N 0 1 1 . The update equation 

can be derived by differentiating (8) with respect to 

the FIR channel vector ( )kw . Then, the resulting 

updating equation is: 
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where RL RL 1 1 . In Eq. (10), since 

 sgn ( ) Nk f 11 , then    sgn ( ) ( ) sgn ( )k k kf w w . 

Note that although the weight vector ( )kw  changes in 

every stage of this sparsity-aware LMS/F algorithm, it 

does not depend on ( )kw , and the cost function 

( )RLG k1  is convex. Therefore, the RL1 penalized 

LMS/F is guaranteed to converge to the global 

minimization under some conditions. To evaluate the 

sparse penalty strength of ZA, RZA and RL1, we 

define above three sparse penalty functions as follows: 

 sgn( ),ZA  w                         (11) 

 
 sgn

,RZA





w

w1
                      (12) 

 
 sgn

,RL





w

w1                       (13) 

where channel coefficients inw are assumed in range 

[ , ]1 1 . Considering above sparsity functions in Eqs. 

(11)~(13), their sparse penalty strength curves are 

depicted in Fig. 2. One can find that ZA utilizes 

uniform sparse penalty to all channel coefficients in 

the range of [ , ]1 1  and hence it is not efficient to 

exploit channel sparsity.  Unlike the ZA (11), both 

RZA (12) and RL1 (13) make use of adaptively sparse 

penalty on different channel coefficients, i.e., stronger 

sparse penalty on zero/approximate zero coefficients 

and weaker sparse penalty on significant coefficients.  

In addition, one can also find that RL1 (13) utilizes 

stronger sparse penalty than RZA (12) as shown in Fig. 

2. Hence, RL1-LMS/F can exploit more sparse 
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information than both ZA-LMS/F and RZA-LMS/F on 

adaptive sparse channel estimation. By virtual of 

Monte-Carlo based computer simulation, our proposed 

method will be verified in the following. 

 
Fig. 2. Comparison of the three sparse penalty functions. 

4. Computer Simulation 

   Simulations are carried out to investigate the average 

MSE performance of the proposed ASCE methods 

using (R)ZA-LMS/F and RL1-LMS/F algorithms. The 

results are averaged over 1000 independent Monte-

Carlo runs. The simulation setup is configured 

according to typical broadband wireless 

communication system in Japan [13]. The signal 

bandwidth is MHz60  located at the central radio 

frequency of  . GHz2 1 . The maximum delay spread of 

. s1 06 . Hence, the maximum length of channel 

vector w  isN 128  and its number of dominant taps 

is set to { , , }K  4 8 16 . Dominant channel taps follow 

random Gaussian distribution as ( , )w
20  which is 

subject to {|| || }E w 2
2 1  and their positions are 

randomly decided within w . The received signal-to-

noise ratio (SNR) is defined as log( )s nE  210 , where 

sE 1  is the unit transmission power. Here, we set the 

SNR as     . All of the simulation parameters are 

listed in Table. II. 

Example 1: Estimation performance of RL1-

LMS/F verses threshold parameter  . Let us revisit Eq. 

(10) and rewritten it as RL1-LMS-like update equation: 
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where ( )k is  an variable-step-size (VSS): 
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                    (15) 

It is well known that the step-size is a critical 

parameter to balance the convergence speed and 

steady-state performance. In (15), ( )k  depends on 

two factors:  -th updating error ( )e k  and threshold 

parameter  . Hence, setting the threshold parameter 

  is very important for controlling the ( )k . We 

depict performance curves with different threshold 

parameters { . , . , . , . , . } 0 2 0 4 0 6 0 8 1 0  in Fig. 3. One 

can find that larger   brings more performance gain 

but meanwhile it incurs slower convergence speed. 

Hence, it is better to find the suitable   so that ( )k  

can balance the estimation performance and 

convergence speed. In the example 2, .  0 8  is 

selected for compromising the stable steady-state 

performance but without scarifying much convergence 

speed. 

 

TAB. II. SIMULATION PARAMETERS. 

Parameters Values 

Training signal Pseudo-random sequence  

Channel length N 128  

No. of nonzero coefficients { , , }K 4 8 12   

Distribution of nonzero 
coefficient 

Random Gaussian ( , )w
20   

Threshold parameter for 
LMS/F-type 

. 0 8   

SNR 10dB 

Step-size . 0 005   

Regularization parameter  .ZA 0 00004 , .RZA 0 004   

and .RL 1 0 00004    

Parameter   for RL1-

LMS/F  

. 0 05   

Re-weighted factor for RZA-
LMS/F 

 20   

 

Example 2: Estimation performance is evaluated in 

different number of nonzero channel coefficients, 

{ , , }K  4 8 12 . To confirm the effectiveness of the 

proposed method, we compare them with sparse 

LMS/F algorithms, i.e., ZA-LMS/F and RZA-LMS/F. 

For a fair comparison, we utilize the same step-size  . 

In addition, to achieve approximate optimal sparse 

estimation performance, regularization parameters for 

two sparse LMS/F algorithms are adopted from the 

paper, i.e., ZA   54 10  for ZA-LMS/F; 

RZA   34 10 for RZA-LMS/F and RL   5
1 4 10  

for RL1-LMS/F. Average MSE performance 

comparison curves are depicted in Figs. 4~6. 

Obviously, RL1-LMS/F achieves better estimation 

performance than sparse LMS/F algorithms (ZA-

LMS/F and RZA-LMS/F) in different channel sparsity. 

Indeed, RL1-LMS/F can obtain more performance gain 

in sparser channel such as K  4  in Fig. 3. Figures 

clarify that the sparse LMS/F algorithms, i.e., ZA-

LMS/F and RZA-LMS/F, achieve better estimation 

performance than LMS/F due to the fact that sparse 

LMS/F algorithms utilize   -norm sparse constraint 

function. 
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Fig. 3. Average MSE performance with respect to different 

threshold  . 

 
 

Fig. 4. Average MSE performance at K  4 . 

 

Fig. 5. Average MSE performance at K  8 . 

 

Fig. 6. Average MSE performance at K 12 . 

 

5. Conclusion and future work 

In this paper, an improved RL1-LMS/F algorithm was 

proposed for estimating sparse channels in typical 

broadband wireless communications systems. We first 

revised two traditional adaptive sparse channel 

estimation methods, i.e., ZA-LMS/F and RZA-LMS/F. 

Inspired by re-weighted   -norm algorithm in CS, an 

improved adaptive sparse channel estimation method 

with RZA-LMS/F algorithm. For the better 

understanding of our motivation, the penalty ability in 

different sparse constraint functions was evaluated.  In 

addition, by virtual of Monte Carlo simulation, we 

investigated threshold parameter approximate optimal 

regularization the selection of parameter for LMS/F-

type algorithms. Based on the typical broadband 

wireless systems in Japan, simulation results showed 

that the proposed method achieves better estimation 

than traditional ZA-LMS/F and RZA-LMS/F.  

     One may notice that our proposed method depends 

on several parameters: regularization parameter RL 1 , 

positive parameter   as well as threshold parameter 

 . Indeed, this paper only considered performance 

comparisons with these empirical parameters but lack 

of system analysis. In future work, we are going to 

give full performance analysis relates to these 

parameters. 
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