計測自動制御学会東北支部 第 292 回研究集会 (2014.11.29) 資料番号 292-2

湖沼調査用モジュール構造型小型水中ロボットの開発 -モデリングと制御方式の基礎的検討-

Development of a small and modular UROV for environmental surveying -Fundamental investigation of modeling and control system-

神尾柊太*, Luis Canete**, 高橋隆行*

Shuta KAMIO*, Luis CANETE**, Takayuki TAKAHASI*

*福島大学, **福島大学大学院

*Fukushima University, **Graduate School of Fukushima University

キーワード: 水中ロボット (Underwater Robot), モジュール構造 (Modular Structure), モデリング (Modeling), 姿勢制御 (posture control)

連絡先: 〒 960-1296 福島県福島市金谷川1番地 福島大学 共生システム理工学類 高橋研究室
 神尾柊太, Tel/Fax.:(024)548-5259, E-mail: shuta@rb.sss.fukushima-u.ac.jp

1. 緒言

福島県には磐梯朝日国立公園に指定されてい る磐梯吾妻・猪苗代地域に,猪苗代湖,檜原湖 をはじめとした多くの湖沼が存在し,水質調査 や生態系調査といった環境調査が継続的に行わ れている.また,2011年に発生した福島第一原 子力発電所の事故が発生して以降,放射線量の 調査も行われるようになった.これらの湖沼調 査では複雑な地形や使用可能な船舶の大きさな どにより,大型の機材を用いることが困難であ る.そのため,人が小型の船舶及び機器を用い て多大な労力をかけて調査を行っているのが現 状である.

そこで筆者らは湖沼調査での負担を軽減する ため, Fig. 1 に示すような小型で多様な調査 が可能であるモジュール構造型小型水中ロボッ

Fig. 1 Prototype of proposed underwater robot

トの開発を行っている¹⁾.本水中ロボットは各 機能ごとにモジュール化されているため,調査 目的によってモジュールを交換することにより, ロボットを小型化かつ多くの調査内容に対応す ることが可能である. 水中ロボットが作業を行う際,作業内容によっ ては一定の高度と姿勢が求められるため,軌道 追従制御を行う必要がある.しかし,形状が複 雑な水中ロボットの流体抗力係数を正確に把握 することは困難であるため,水中ロボットのダ イナミクスには多くのモデル化誤差が含まれる. また,潮流などのモデル化が難しい外乱も考慮 しなければならない.これらの問題に対応する ため,本研究では未知な外乱やダイナミクスの 誤差に対し,ロバスト性を有する制御系の構築 を目指す.

2. 水中ロボットのモデリング

水中ロボットの運動は前後,左右,上下及び ロール,ピッチ,ヨーの6自由度であり,剛体 の運動方程式として表現される.水中ロボット に働く流体抗力やスラスタ推力は機体に固定さ れた座標系で与えられ,ロボットの運動方程式 は機体座標で記述する.一方,ロボットの姿勢 や軌道については空間に固定された座標系で与 えられるため,オイラー角を定義し座標系の相 互変換を行う.

2.1 座標系の定義

静止座標系 \sum_{E} と機体座標系 \sum_{B} を Fig. 2 のように定義する.静止座標系の位置ベクトル η_1 とオイラー角 η_2 ベクトル,及び機体座標系 の速度ベクトル ν_1 と角速度ベクトル ν_2 をそれ ぞれ以下のように表す.

$$\eta_1 = \begin{bmatrix} x & y & z \end{bmatrix}^{\mathrm{T}} \tag{1}$$

$$\eta_2 = \begin{bmatrix} \phi & \theta & \varphi \end{bmatrix}$$
(2)

$$\nu_{1} = \begin{bmatrix} u & v & w \end{bmatrix}$$
(3)
$$\nu_{2} = \begin{bmatrix} p & q & r \end{bmatrix}^{\mathrm{T}}$$
(4)

位置ベクトル η₁ と速度ベクトル ν₁ との関係は オイラー角を用いて以下のように表す.

$$\dot{\eta_1} = J_1(\eta_2)\nu_1$$

Fig. 2 Earth-fixed and Body-fixed reference frames

$$J_{1}(\eta_{2}) = \begin{bmatrix} C_{\varphi}C_{\theta} & C_{\varphi}S_{\theta}S_{\phi} - S_{\varphi}C_{\phi} & C_{\varphi}S_{\theta}C_{\phi} + S_{\varphi}S_{\phi} \\ S_{\varphi}C_{\theta} & S_{\varphi}S_{\theta}S_{\phi} + C_{\varphi}C_{\phi} & S_{\varphi}S_{\theta}C_{\phi} - C_{\varphi}S_{\phi} \\ -S_{\theta} & C_{\theta}S_{\phi} & C_{\theta}C_{\phi} \end{bmatrix}$$

$$(5)$$

また,オイラー角ベクトル η_2 と角速度ベクトル ν_2 は次式のような関係で表すことができる.

$$\nu_{2} = J_{2}^{-1}(\eta_{2})\dot{\eta_{2}}$$

$$J_{2}^{-1}(\eta_{2}) = \begin{bmatrix} 1 & 0 & -S_{\theta} \\ 0 & C_{\phi} & S_{\phi}C_{\theta} \\ 0 & -S_{\phi} & C_{\phi}C_{\theta} \end{bmatrix}$$
(6)

2.2 運動方程式

機体座標系の原点と重心は一致しているとし て運動方程式を求める.慣性行列を*M*とし,次 式に示される Kirchhoff equation of motion を 用いて運動方程式の導出した²⁾.

 $T - \frac{1}{2} \mu^T M \mu$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \nu_1} \right) + \nu_2 \times \frac{\partial T}{\partial \nu_1} = \tau_1$$
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \nu_2} \right) + \nu_2 \times \frac{\partial T}{\partial \nu_2} + \nu_1 \times \frac{\partial T}{\partial \nu_1} = \tau_2$$
(7)

式(7)より,運動方程式は以下のようになる.

$$M\dot{\nu} + C(\nu)\nu = \tau \tag{8}$$

ここで, *C* はコリオリ項及び遠心力項であり, *τ* は外力を表す.

2.3 水中ロボットに働く外力

水中ロボットに働く力には付加質量力,流体 抗力,重力と浮力による復元力,推力などが存 在する.

流体抗力は速度に比例する力と速度の二乗に 比例する力がある.速度の二乗に働く力 F_Dは

$$F_D = \frac{1}{2}\rho v^2 S C_D \tag{9}$$

と表される.ここで, ρ は流体の密度,vは流体 との相対速度,Sは物体の流体の流れに垂直な 最大投影面積, C_D は流体抗力係数を示す.

重力ベクトル及び浮力ベクトルは機体座標で 表すために式(5)を用いて以下のように表す.

$$f_G(\eta_2) = J_1^{-1}(\eta_2) \begin{bmatrix} 0 & 0 & mg \end{bmatrix}^{\mathrm{T}}$$
(10)
$$f_B(\eta_2) = -J_1^{-1}(\eta_2) \begin{bmatrix} 0 & 0 & \rho gV \end{bmatrix}^{\mathrm{T}}$$
(11)

機体座標系の原点から浮心までの位置ベクトル を r_B とすると,重力及び浮力が発生させる力 とモーメントは以下のようになる.

$$g(\eta) = \begin{bmatrix} f_G(\eta_2) + f_B(\eta_2) \\ r_B \times f_B(\eta_2) \end{bmatrix}$$
(12)

3. 小型試験機の開発

本研究では,開発した制御システムの動作を確 認するため実機にシステムを導入して実験によ り確認することを計画している.しかし,現行機 の大きさはH640[mm]×W550[mm]×D740[mm] であり,プール等で実験を行うのは困難である. そこで,水深が浅い場所でも実験が行えるよう に,Fig.3に示す小型試験機を開発した.寸法 はH165[mm] ×W580[mm]×D550[mm] で空中

Fig. 3 Testing machine

Fig. 4 RX621

重力は 7.4[kg] である. 搭載するマイクロコン ピュータには開発環境等を考慮し, Fig. 4 に示 すルネサステクノロジ製の RX621 を用いた.主 な仕様を Table 1 に示す.

Table 1Specifications of RX621		
Item	Unit	Value
Operating Frequency	[MHz]	96
Supply Voltage	[V]	3.3
Read Only Memory	[kB]	96
Random Access Memory	[kB]	512
16 bit MTU		12

スラスタ部には Fig. 5 に示す maxon 製の EC45flat50[W] を搭載した.主な仕様を Table 2 に示す.スクリュープロペラには RABOESCH 製の直径 55[mm],4 枚羽のものを用いた.これ らのモーターとプロペラを用いた場合,静止時 推力が最大 14[N] 発生することが実験によって 確認されている.³⁾

Fig. 5 EC45 flat 50[W] brushless DC motor

Table 2Specifications of EC45 flat 50[W]brushless DC motor

Item	Unit	Value
Power rating	[W]	50
Nominal voltage	[V]	18.0
Stall torqe	[mNm]	1100
Max continuous current	[A]	3.54

4. 流体力の測定

水中ロボットに働く流体抗力を推定するため, 水中ロボットに働く抗力と速度の関係を測定し た.Fig.6に示すようにモーターのトルクで水 中ロボットを引っ張り,一定速度の時の水中ロ ボットに働く抗力を求めた.モーターのトルク はモーターに流れる電流から求め,速度検出に はエンコーダを用いた.sarge,sway,heave方 向に行った実験結果をそれぞれFig.7,Fig.8, Fig.9に示す.

Fig. 6 Measurement of hydrodynamic force

Fig. 7 Experimental result of sarge

Fig. 8 Experimental result of sway

Fig. 9 Experimental result of heave

得られた結果から最小二乗法を用いて速度と 抗力の関係を求めた.sargeとswayについては 速度に比例する力のみ(速度の二乗に比例する 項は無視できる)と推定された.今後,得られた 関係式を用いてシミュレーションを行った結果 と,実機での動作と比較することによって,推 定した式の妥当性の確認を行う.

5. 制御手法

水中ロボットを制御するにあたり問題となる のは,ロボットの形状が複雑なため,流体力係数 を正確に表すことが困難なことである.そのた め,水中ロボットのダイナミクスには多くのモデ ル化誤差が含まれる.また,水流の影響や,さま ざまなモジュールを交換した場合のモデル変化, 水中ロボットが受ける外乱などはモデル化する ことが困難である.そのため,未知の外乱やモ デル化誤差に対応したロバスト性の高いコント ローラが必要である.現在,筆者らは制御手法 として拡張状態オブザーバ(以下 ESO:Extended State Observer)⁴⁾を用いることを検討している. ESO は制御対象のダイナミクスや未知の外乱な どを全て1つの拡張状態という時間関数として とらえ,拡張状態を推定するオブザーバである. ESOはパラメータ変動や外乱など不確定な要因 によってモデリングが難しく,非線形性の強い システムの安定化問題,軌道追従問題に応用例

がある⁵⁾.今後, ESO を用いた制御システムの 開発,シミュレーションを行い,実機にて有用 性を確認する.ESOの概要については次節にて 述べる.

5.1 拡張状態オブザーバ(Extended State Observer)

式 (13) に示す,入力を u(t),出力を y(t) とした 1 入出力の n 次の非線形システムを考える.

$$y^{n}(t) = f(y^{(n-1)}(t), y^{(n-2)}(t), \cdots,$$

$$\cdots y(t), w(t)) + bu(t)$$
(13)

ここでwは有界な外乱であり,bは入力に対する係数である.このとき $h \equiv f$ と定義すると,式 (13)は状態空間モデルとして以下のように表現できる.

$$\dot{x}_{1} = x_{2}$$

$$\vdots$$

$$\dot{x}_{n-1} = x_{n}$$

$$\dot{x}_{n} = x_{n+1} + bu$$

$$\dot{x}_{n+1} = h(x, u, w, \dot{w})$$

$$y = x_{1}$$
(14)

ここで $x = [x_1, x_2, \cdots, x_{n+1}]^T$ は拡張状態 $x_{n+1} = f$ を含む状態変数ベクトルである.式 (14)で表されるシステムに対し,同一次元オブ ザーバを式 (15)のように構成する.

$$\dot{\hat{x}}_{1} = \hat{x}_{2} + l_{1}(x_{1} - \hat{x}_{1})$$

$$\vdots$$

$$\dot{\hat{x}}_{n-1} = \hat{x}_{n} + l_{n-1}(x_{1} - \hat{x}_{1})$$

$$\dot{\hat{x}}_{n} = x_{n+1} + l_{n}(x_{1} - \hat{x}_{1}) + bu$$

$$\dot{\hat{x}}_{n+1} = l_{n+1}(x_{1} - \hat{x}_{1})$$
(15)

ここで,新たな入力 u₀を用いると,ESO による推定値を用いた外乱補償制御における制御則 は式 (16) で与えられる.

$$u = \frac{u_0 - \hat{f}}{b} \tag{16}$$

ESO による推定が適切に行われていると仮定す ると,式(16)に式(13)を代入すると式(17)が 得られる.

$$y^{(n)}(t) = f(\cdot) - \hat{f} + u_0$$

$$\approx u_0 \qquad (17)$$

式 (17) は原点に n 個の重根を持つシステムとな り,フィードバック安定化可能となる.このよ うに,たとえモデルや外乱が未知であっても,b の同定,オブザーバの設計のみで外乱や誤差の 抑制が可能となる.

6. 結言

本論文では,水中ロボットのモデル化誤差や システムの変化,未知の外乱に対するロバスト 制御の開発を目的とし,水中ロボットのモデリ ングと制御手法について述べた.また,小型試 験機の概要について述べた.今後の予定として は,拡張状態オブザーバを用いた制御システム の開発を行い,開発した制御システムを実機に 搭載して確認を行う.

謝辞

本研究を進めるにあたり,多方面でご協力頂 いた日本オートマチックマシンの五十嵐伸一様, タケルソフトの山崎潤一様にこの場をお借りし て心より厚く御礼申し上げます。

参考文献

- ・猿田祐平,大室拓哉,高橋隆行:湖沼調査用モジュール構造型小型水中ロボットの開発-試作機の開発と水中での基本的動作の確認-,計測自動制御学会システムインテグレーション部門講演会 SI2012,3K2-3
- 2) Thor I.Fossen: Guidance and Control of Ocean Vehicles , 5/56 , Wiley(1994)
- 3) 大室拓哉, 猿田祐平, 高橋隆行: 低雑音型ワイ ヤレススラスタモジュールの開発, 日本機会学 会ロボティクス・メカトロニクス講演会 2012, 2P1-H10

- 4) バグスマハワン、羅正華、韓京清、中嶋新一: 拡張状態オブザーバによるロボットの高速・高精度運動制御、日本ロボット学会誌 vol.18,No 2, 244/251 (2000)
- 5) Luis Canete, Takayuki Takahashi: Development of a Single Controller for the Compensation of Several Types of Disturbances During Task Execution of a Wheeled Inverted Pendulum Assistant Robot, IEEE/RSJ International Conference on Intelligent Robots and Systems, (2014)