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In this note, we first show a relationship between
two stabilizing controllers, which presents an extended
feedback system using two stabilizing controllers. Then,
we apply this relationship to the two-stage compen-
sator design. In this note, we consider single-input
single-output plants. On the other hand, we do not
assume the coprime factorizability of the model. Thus,
the results of this note are based on the factorization
approach only, so that they can be applied to numer-

ous linear systems.

Introduction

The factorization approach to control systems has
the advantage that it embraces, within a single frame-
work, numerous linear systems such as continuous-
time as well as discrete-time systems, lumped as well
as distributed systems, one-dimensional as well as
multidimensional systems, etc.[1, 2, 3, 4, 5, 6]. Hence
the result given in this note will be able to a number
of models in addition to the multidimensional sys-
tems. In factorization approach, when problems such
as feedback stabilization are studied, one can focus
on the key aspects of the problem under study rather
than be distracted by the special features of a partic-
ular class of linear systems. This approach leads to
conceptually simple and computationally tractable
solutions to many important and interesting problems|[7].
A transfer function of this approach is considered as
the ratio of two stable causal transfer functions. For
a long time, the theory of the factorization approach

had been founded on the coprime factorizability of
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transfer functions, which is satisfied by transfer func-
tions over the principal ideal domains or the Bézout
domains.

In some design problems, one uses a so-called two-
state procedure for selecting an appropriate stabiliz-
ing compensator[7]. Given a plant, the first stage
consists of selecting a stabilizing compensator for the
plant. The second stage consists of selecting a stabi-
lizing controller for the new closed-loop system that
also achieves some other design objectives such as
decoupling, sensitivity minimization, etc. The ratio-
nale behind this procedure is that the design prob-
lems are often easier to solve when the plant is sta-
ble. It is known that there are models such that
some stabilizable plants do not have coprime factor-
izations [8]. For some models of control systems, it
is not known yet whether or not a stabilizable plant
always has its doubly coprime factorization.

In this note, we restrict our attention to single-
input and single-output plants. Our first result is
to give a relationship between two stabilizing con-
trollers, which presents an extended feedback system
using two stabilizing controllers. Then, we apply
this relationship to the two-stage compensator de-
sign. This two-stage compensator design is different
from the original two-stage compensator design[7].
The original one considered one input and one out-
put. On the other hand, this two-stage compensator
design uses two inputs and two outputs. Further, all

stabilizing controllers can be obtained.

2. Preliminaries

The stabilization problem considered in this note
follows that of [9], and [10], who consider the feed-
back system ¥ [7, Ch.5, Fig. 5.1] as in Fig. 1. For
further details the reader is referred to [7], [9], [10],
and [11].

We consider that the set of stable causal transfer
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Fig. 1  Feedback system 3.

functions is an integral domain, denoted by A. The
total ring of fractions of A is denoted by F; that is,
F =A{n/d|n,d € A, d# 0}. This F is considered
as the set of all possible transfer functions. Matrices
over F are transfer matrices. Let Z be a prime ideal
of A with Z # A. Define the subsets P and Ps
of F as follows: P = {a/b € Fla € A, b e A\Z},
Ps = {a/b € Fla € Z, b € A\Z}. Then, every
transfer function in P (Ps) is called causal (strictly
causal). Analogously, if every entry of a transfer
matrix is in P (Ps), the transfer matrix is called
causal (strictly causal).

Throughout the note, the plant we consider has
single-input and single-output, and its transfer func-
tion, which is also called a plant itself simply, is de-
noted by p and belongs to P. We can always rep-
resent p in the form of a fraction p = nd~!, where
n € A and d € A with nonzero d.

For p € P and ¢, a matrix H(p,c) € F2*? is de-

fined as

_[Q+po)™ —p(1+pe)~!
H(p,c) := c(l+pc)™t  (1+pe)t (1)

provided that 1+ pc is a nonzero of A. This H(p, c)
is the transfer matrix from [u} u4]" to [} 4]’ of
the feedback system X. If 1 + pc is a nonzero of A
and H(p,c) € A?*2, then we say that the plant p
is stabilizable, p is stabilized by ¢, and c is a stabi-
lizing controller of p. In the definition above, we
do not mention the causality of the stabilizing con-
troller. However, it is known that if a causal plant is
stabilizable, there always exists a causal stabilizing
controller of the plant [10].

It is known that W (p, ¢) defined below is over A if



and only if H(p,c) is over A:

c(1+pe)~!
pe(l + pe)

—pc(1+ cp)
p(1+cp)?
t t ]t

This W (p,c) is the transfer matrix from [u} u}

W(p,c) =

to [y whl"

We employ the symbols used in [12] and [9]. Also
we will denote by S(p) the set of stabilizing con-
trollers of p.

3. Relationship between two sta-

bilizing controllers

Let p be a causal plant (p € P). Here we consider
two stabilizing controllers ¢y and ¢; of p (¢, ¢1 €
F). Using ¢y only we consider w(p,cp), a feedback
system. The relationship we give here is that the this
w(p, cp) can be stabilized by the following matrix:

p 1+2pc

K | ®)
c1

We note that ¢y and ¢; can be independently se-

lected. Even so (3) is a stabilizing controller of W (p, c).

This is stated as following theorem:

Theorem 1 Let p be a causal plant. Also let ¢y and
c1 of p be stabilizing controllers of p. Then w(p, cy)
is stabilized by the matriz of (3).

We note that there is no restriction between ¢y and
c1 in this theorem.
Before starting the proof of this theorem, we present

the following:

Theorem 2 ([13, Theorem 2.4]) Let F be a field.
Let A is a square matriz of F' with size n1 + ny and

18 decomposed into as follows:

ny o N
ny | A A | A
ng | Aa1 Ao

Assume that A1y is nonsingular. Then, A is nonsin-
gular if and only if Agg — AglAilAlg 1s also nonsin-

gular.

In the case where two matrices A1l and A —
AglAﬁlAlg are nonsingular, then we have the fol-

lowing:
(i) The (1,1)-block of A~! is
A+ AT Ara(Age — Agp A Ar) P Ay AL

(ii) The (1,2)-block of A™1 is
—Af11A12(A22 - A21A1711A12)71-

(iii) The (2,1)-block of A~ is
—(Agg — A1 AT Arg) L A9 AL

(iv) The (2,2)-block of A~! is

—(Agy — Ay A7 Are) L

Proof.
Thus we need to show that

First we denote by Cj the matrix in (3).

(i) (I2+C1W (p,co)) (or equivalently (I2+W (p,co)C1))
is well-defined.

(il) W(W (p,cp),C1) is over A.
First we show (i) and then (ii).

(i). Let N and d be a matrix over .4 and an element
of A, respectively, such that p = Nd~'. Also let
A and b be a matrix over A and an element of A,
respectively, such that C; = Ab~!. We consider the
following matrix:
(1+pco)™"  =2p(1+cop) ™ +p(1 +c1p) ™!

—co(1+pco)™t 2co(1+peo) o+ (14 cip) !
The determinant of (4) is (14 ¢;p) !, which is non-
singular. Hence (4) has its inverse.

Now we compute Iy + C1W (p, cp):

I, + C1W (p, co)
_ L4 {p 1+2pcl}
1 c1
" [ co(1+pco)™  —cop(1 4 cop) ™!
peo(1+peo)™  p(1+cop)™
1+ 2(1 + per)peo(1 + peg) L
(p + 2pcip — peop) (1 + cop) ™!
co(1 +per)(1 +peo)
(14 c1p)(1 + cop)~t

(5)



Now we consider the multiplication of (4) and (5).

(14 pco)~!
—Co(l +p00)71
1+ 2(1 + per)peo(1 + peg) L
(p + 2pc1p — peop) (1 + cop) ™!
co(1 + per)(1+ peg) ™!
(1 + c1p)(1 + cop)~t

This multiplication results the identity of the size
2 x 2. Now we see that the matrix (Iy + C1W (p, cg))

is well-defined and its inverse is the matrix of (4).
(ii).

trix W(W(p,cp),C1) is over A, which means that

We now turn to show that the transfer ma-

w(p, cp) is stabilized by the matrix of (3). Decom-

pose W (W (p,cp),C1) into

[Mn M12]
Moy Moo

W(W(p, CO)? Cl)

as follows

My = Ci(Io+W(p,co)Ci) ™",

My = —CiW(p,co)(I2 + C1W (p,co)) ™",
My = Wi(p,co)Ci(la+ W (p,c0)C1) ™,

My = W(p,co)(Iz + CiW (p, o))" (7)

In the following, we show every Mi; to Mas is over
A.

First we consider Mjo, which is as follows:

My, C1(Iy + W (p,co)Cr) !
(I, + C1W (p, c)) ' C)

—p(1+ cop) ' +p(1 + c1p) ™!
(1+pco) ' +p(1+ap)ta

co(1+pco)tp+ (1 +ep)™t
—co(14peo) ™t + (1 +ap)'a

Then we consider Mo, which is as follows:

My, —C1W (p, co) (I + C1W (p, o)) !
—Iy + I, — CYW (p, co) (T2 + C1W (p, co))

—Ir + (I + C1W (p, c0)) . (9)

The first and the second terms of the right hand side

is over A. Hence Mjy is over A. Then we consider

—2p(1 +cop) + p(1 + c1p)
2¢o(1 + peo) 'p+ (14 c1p) ™

(6)

Mo, which is as follows:

Mo, W (p,co)Ci(I2 + W (p,co)C1)

W (p, co)(Iz + C1W (p, co)) 1 Cy

= W(p,co)Mi1. (10)
The last one is My, which is as follows:
My, = W(p,co)(Iz+Ci1W(p,co))~ ' (11)

Both W (p,co) and (I + C1W (p,co))~! are over A.
Hence W (W (p, cp),Ch) is over A. O

4. Two-Stage Compensator Design

In some design problems, one uses a so-called two-
stage procedure for selecting an appropriate stabi-
lizing compensator[7]. Given a plant p, the first
stage consists of selecting a stabilizing compensator
for p. Let ¢y € S(p) denote this compensator (that

is, an arbitrary but fixed compensator of p) and de-

fine p1 = p(1 + cop)’l.

of selecting a stabilizing controller for p; that also

The second stage consists

achieves some other design objectives such as decou-
pling, sensitivity minimization, etc. The rationale
behind this procedure is that the design problems
are often easier to solve when the plant is stable.
The resulting configuration with its inner and outer

loops is shown in Fig. 2.

Figure 2: Two-Stage Compensator Design (y2 to

UQ).
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The following show that, in general, the two-stage
compensator design based on Fig.2 cannot give all

stabilizing controllers.

Theorem 3 ([14]) Let p denote a causal plant of P
and ¢y a causal stabilizing controller of p (co € P).
Further let p1 be p(1+ cop)~L. Denote by co + S(p1)
the following set:

{eco+ciler € S(p1)}-

Then
co +S(p1) € S(p), (12)

with equality holding if and only if ¢y € A.

Theorem 4 ([14]) Letp, co, p1 be as in Theorem 3.
Letn, d, y,  be in A such that

{ b= nd_la Co = y'r_la

(13)
ny +dz = 1.

Then we have

co+S8(p1) = {(z—rn) "y +rd)
|r=riz®,r € A, (x—rn) #0}.  (14)

By Theorem 3, we see that the sum of ¢y and a sta-
bilizing controller of p1, say c1, is again a stabilizing
controller of p. This sum, a stabilizing controller of
p, is the parallel allocation of ¢y and ¢1, as shown in
Fig. 3. However, this cannot give all stabilizing con-
trollers if ¢y & A. To solve this problem we will apply

Theorem 1 to the two-stage compensator design.

Figure 3: Composite Stabilized Feedback with cq

and c;.

5. Application to Two-Stage Com-
pensator Design

This section investigates the full-feedback of Fig. 4,
to which we apply the result of the last section.

Theorem 5

S(p) = {(1 + wiz) " w]
(a) Ry € AP,
(b) (I — RiW (p,cp)) is nonsingular,
(c) Cy == (I — RyW (p, co)) 'Ry,

(d) [wll ’U)12:| — |:0 1 1 0-
W21 W22 0 0 O 1_
r0 0
WOV (.o O || o |-
L0 1
(e) 1+ wig is nonsingular}. (15)

Proof. “C”-part. Let ¢y and ¢; be stabilizing con-
trollers of p (cg, ¢1 € S(p)). Let C} be

1+2
Clz{p + pq]

1 C1
Then by Theorem 1, W (W (p, ¢p), C1) is over A. This
W (W (p,cp),C1) is calculated as follows:

mi1 Mmi2 M1z Mi4
mo1 Mo M3 M4
W(W(p700)701) == )

m31 Mm32 M33 M34

ma41 My M43 Myq

where
my = —p(14+cop)t +p(1l +eip)
miz = (1+peo)”" +per(l +per)”
miz = —1+(1+pc)”t,
mu = —2p(1+cop)”' +p(1+cp)~!,
ma = co(1+pc) 'p+(1+ap) ',
may = —co(1+pco) '+ (14 cp) e,
moz = —co(l +pCO)_1,
may = —142¢(1+pco) 'p+(1+ep) !,
mg1 = —co(l+pco)~t,



ms32

m33

m3q

mi1

ma2

M43

Zv

= co(1+peo) ™,

= co(1+pco)~t,

= —2cop(1 + cop) ",
= p(l+ap)!,

= p(l+cap) e,

- 0,

= p(l+ep)t

Consider Condition (c):

-wll ’U)12:|

| W21 W22
0 0
S IR L CUCTRRE ] B
0 1
~ mi1 Mmi2 M1z Mig
_ |0 1 1T 0| [ma1 ma2 moz mos
B (0.0 0 1] msy M3z Ms33 M3y
mgq1  MM42 143 1M44q
_ [ma2 +m32 + maz +msz mag +may

B my42 + M43 Mgy

Thus,

w11 =

w12 =

and

Moo + M3 + M3 + M33

—co(1+pco) ™t + (L+cp) e

+ co(1 4 peg) ™t — co(1 + pey) ™

+ co(1 + peg) ™!
(1+cip)ter,

Moy + M3y

-1+ 200(1 + pco)_lp

O = = O

— O O O

(16)

1

(17)

+ (1 +ec1p) ™t = 2cop(1 + cop)

-1+ 1+ clp)_l,

Wo1 = M4 + M43
= p(1+cp) e,
W2 = M4y
= p(l+cap)t

(18)

(19)

Hence, w11 to woo are all in A. Thus,

14wy = 1+ (=140 +ep)™h

— (14ap) (21)

This is nonsingular, by which Condition (e) in The-
orem b is satisfied.

Further (1+w12) twiy is now ((1+c1p) 1)~ 1((1+
c1p) " ter), which is equal to ¢;. That is, ¢; is an
element of the right hand of (15).

Let Ry € A?*? of Condition (a) in Theorem 5 be

Ry = 01(12 + W(p, 00)01)71. (22)

This is equal to (8), so that this R; is over A.

Now, Io—R1W (p, cp) is equal to (Io+C1W (p,co)) L,
which means that I, — RyW (p,co) is nonsingular.
Thus Condition (b) of Theorem5 is satisfied. Also,
from (22), we have Condition (c) of Theorem 5.
“D”-part. Let ¢y be stabilizing controllers of p (co,
c1 € S(p)). Let Ry € A**2, O € F**2 be arbi-
trary matrices that satisfy Conditions (a) to (e) of
Theorem 5.

First we decompose 71 as follows:

[m m}
=Trr.
T21 T22
Then,
[wll wu]
W21 W22
0 0
01 1 0 1 0
- |:0 0 0 1:| W(W(pv 00)701) 1 0
0 1

1+ Cop)il(—coTuCo — ra100 + cor12 + 122) (1 + pco)71

(

1+ Cop)_l(cohlco + ra21c0 — coT12 — T22)p(1l + Cop)_1

p(1+ cop) ™ (—cori1co — r21¢0 + coriz + r22) (1 + peo) *
p(1 + cop) ™" (cor11co + r2100 — cor12 — r22)p(1 + cop)”

{ co(1 4 peo)™  —cop(1 + cop) !
peo(1+pco)™  p(1+cop)™!

1

Now, we have

wir = (L4 cop)™ " (—cori1co — ra1co + coria + 122)
X (14 peo) ™"+ co(1+ peo) ™,
wia = (14 cop)~ (coriico + raico — coriz — 22)

xp(1+ cop) ™! — cop(1 + cop) ',



wyr = p(1+cop)~H(—coriico — raico + coriz + Ta2)
x(1+peo) ™t + peo(1 + peo) ™,
wae = p(1+cop) eoriico + ra1co — cori2 — T22)

xp(1+4 cop) "+ p(1 + cop) ™

Let cnew be

CNew
= (1+ w12)_1w11
= ((cor11co + r2100 — Cor12 — T22)p(L 4 cop) ' + 1) 7!
((—cor11co — ra1co + coria + 122) (1 + peg) ™ + o).
(23)

Further let Q = —corii1co — ro1¢o + coria + roa. Then

(Q(1 + pco) ™ + co).
(24)

(—=Qp(1 +cop) ™t +1)7*

CNew —

In the following we show that cnew is in S(p). To do

so, we show that (1 + cNewP) !, eNew (1 4 eNewp) ™1, (1 +
cNewp) ! are in A.
Now
(1 + cNewp) !
(14 cop) ™' (—Qp(1 + cop) ™ +1)
= (L+cop)”'corricop(1 + cop) ™"
+(1 + cop) ' ra1cop(1 + cop)
—(1+ cop)”"eorizp(1 + cop) !
—(1 + cop) " traap(1 + cop) !
+(1 + cop)~".

Every r;; and every underlined expression above are in A.
Hence (1 + cnewp) ! is in A.

P(L + cNewp) ™!
= —p(1+cop) ' Qp(1 + cop) ™
= —p(1+cop)~H(—cor11co — ra1co + coT12 + T22)
xp(1+ cop) ™" + p(1 + cop) ™!
= p(1+cop) 'coriicop(l + cop)
+p(1 + cop

+p(1+cop)~!

-1

"ra1cop(1 + cop) "

)
1 ) 1

cor12p(1 + cop

"raap(1 4 cop) !

( )~
—p(1 + cop)”
—p(1 + cop)”
+p(1 + cop) "

Every r;; and every underlined expression above are in A.
Hence p(1 + cnewp) ! is in A.

(1+ cNewp) ™ eNew
= (1+cop) " (—=Qp(1 + cop) ™" + 1)cNew
(14 cop) Q1+ peo) ™" + (1 + cop) "o
= —(1+cop) 'eorirco(l + pey) "

—(1+ cop) " Mrarco(1 + peg) !
+(1 + cop) " 'eor1a(1 + peo) "
+(1+ cop) " 'raa(1 + peg) !
+(1 + cop) ' co.

Every r;; and every underlined expression above are in A.
Hence (1 + cNewP) ' CNew is in A.

Hence cNew is in S(p). O

6. Conclusion

In this note, we have shown a relationship between
two stabilizing controllers (Theorem 1). This result
gives that for any stabilizing controller ¢y of p, the
feedback system W (p, cp) of p and ¢y is stabilized by

the matrix
[P 1+ 2pcy ]
1 c1 ’
where ¢; is also any stabilizing controller of p.

We have applied this relationship to the two-stage
compensator design. This two-stage compensator
design uses two inputs u; and ug and two outputs
y1 and y (Theoremb). This gives the parametriza-
tion of all stabilizing controllers.

The results of this note are based on the factoriza-
tion approach, so that they can be applied to numer-
ous linear systems. In this note, we do not have con-

sidered multi-input multi-output case, which should

be investigated as a future work.

Yoo Yo 3 Uy & & V=,
U] Yoy FU _’TT> Co M P . t v=
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Fig. 4  Feedback System with ¢y and Cf.
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