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1. Introduction 

Compressive sampling method [1] is viewed as one of 

most important content in compressive sensing (CS) 

[2][3], which has attracted a high attention in wide 

research field, such as computer science, medical science, 

and imaging processing. In brief, CS signal recovery 

problem can be formulated as 

 ,y As   (1) 

where 𝒔 ∈ ℝ𝑁  means an original sparse signal, 𝑨 ∈

ℝ𝑀×𝑁 , (𝑀 ≪ 𝑁) stands for a suitable dictionary matrix, 

and 𝒚 ∈ ℝ𝑀  denotes a transformed down-sampling 

signal. Rely on the known dictionary matrix 𝑨  and 

sampled signal 𝒚, one can recover the 𝒔 utilizing sparse 

signal reconstruction (SSR) algorithms. 

Different with conventional sparse signals, whose 

nonzero atoms appear independently, the signals in 

block-sparse model have continuous locations as 

nonzeros or zeros [4][5] as shown in Fig. 1. Usually, the 

block-structured sparse signals arise in multi-band 

signals, or gene expression level measurements [4]–

[7][18]. Specifically, original block-structured sparse 

signal can be expressed as below, 
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where 𝑁 = 𝐼 ∙ 𝑑, 𝑑  denotes the grouping distance, and 𝐼 

denotes the number of grouping. Furthermore, according 

to Eq. (2), 𝒔  is called block 𝐾 -sparsity, where 𝐾 ∈

{1,2, … , 𝐼}  is the most indices of the number of blocks 

involving nonzero atoms. 

Fig. 1  Block-structured sparse signals. 

Recently, the block version of sparse adaptive filtering 

algorithms, i.e. block zero attracting least mean square 

(BZA-LMS) algorithm and block ℓ0 -norm LMS (BL0-
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LMS) [8], have been proved that can effectively improve 

recovery performance aim to block-sparse signals under 

various scenarios. On one hand, block-sparse adaptive 

filtering algorithms inherit the inherent merits of the 

conventional sparse adaptive filtering algorithms, such 

as their moderate computation and well noise 

elimination capability, moreover the outstanding 

recovery accuracy [9]. On the other hand, in solving the 

problems of block-sparse signals recovery, block-sparse 

adaptive filtering algorithms can adaptively sense partial 

sparsity information, to obtain evident performance 

improvement eventually [8]. 

The grouping pattern of above-mentioned block-

sparse adaptive filtering algorithms is based on a fixed 

form, namely the recovery signal is evenly separated to 

implement sparse constraint. However, this kind of even 

grouping pattern may not sufficiently adapt to realistic 

block-sparse structure of original signals, result in not 

obtain the full performance gain. To our best of 

knowledge, this is the first time to employ a novel 

iterative-grouping pattern into block version of SSR 

algorithms. The purpose of this paper is to further 

improve recovery accuracy aim to block-sparse signals. 

2. Review of Block-Sparse Adaptive 

Filtering Algorithms 

In this section, the signal recovery method based on 

adaptive filtering framework, and the block version of 

adaptive filtering algorithms which apply sparse 

constraint in fixed groups, will be reviewed. 

2.1 Adaptive Framework to Recover CS Signal 

Frankly, in practical transmission process, ambient 

interferences cannot be neglected. Recalling mentioned 

CS problem Eq. (1), an updated underdetermined 

equation considering harmful noises is denoted by 

 . y As v   (3) 

The recursion error of popular adaptive filtering 

algorithms [10] can be denoted by 

 ( ) ( ),j je n y n a s   (4) 

where 𝑦𝑗  is viewed as desired signal, 𝒂𝑗  is utilized as 

input training-sequence signal, and 𝒔(𝑛)  denotes 

recovery signal in adaptive framework shown in Table 1. 

Through iteratively minimizing 𝑒(𝑛) , 𝒔(𝑛)  is recovered 

more and more accurately, the illustration of solving CS 

problem by adaptive framework is shown in Fig. 2. 

Table 1  Corresponding variable meanings of adaptive 

algorithms in solving CS problem. 

Adaptive algorithms CS problem 

Input signal 𝒂𝑗 ,  𝑗 ∈ {1,2,… ,𝑀} 

Recovery signal 𝒔(𝑛) 

Desired signal 𝑦𝑗 = 𝒂𝑗𝒔 + 𝑣𝑗  

Fig. 2  Solve CS problem in adaptive framework. 

2.2 Block Version of Sparse Constraint 

Note that standard adaptive filtering algorithms cannot 

exploit signal sparsity, while actually many effective 

sparse adaptive filtering algorithms have been presented to 

obtain sparse solutions [9][11]–[16]. Through separately 

sensing the sparsity information of each group in recovery 

signal as shown at the top of Fig. 3, block-sparse adaptive 

filtering algorithms obtained better recovery effects aim to 

block-structured sparse signals. 

Fig. 3  Grouping separation and grouping classification. 

2.3 Block-Sparse Adaptive Filtering Algorithms 

The cost function of BZA-LMS algorithm is defined as 

below, 

    2

1
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where 𝑖 ∈ {1,2, … , 𝐼} . In Eq. (5), each adaptive 

regularization parameter (AREPA) is responsible for 

adaptively regularizing sparse penalty strength to each 

group of recovery signal, where the formula of AREPA 

series is defined as 

       
2 2 2

2 2
( ) ( ) ,i n i n i n d       s s   (6) 

where 𝜆  means initial REPA parameter. In fact, the 

AREPA is determined by following four variables, 

 ‖𝒔[𝑖](𝑛)‖2
2: Average power of recovery signal in groups, which 

plays the most critical role in adaptive regulation against signal-

sparsity levels; 

 𝛿 : Threshold of AREPA, which works for guaranteeing the 

application stability of AREPA; 

 𝜎 : Standard deviation of noise interferences, AREPA can 

adaptively regulate according to different noise levels by 

involving variance 𝜎2; 

 𝑑: Grouping distance, direct ratio to ‖𝒔[𝑖](𝑛)‖2
2 in general. 

The update recursion equation derived from the cost 

function (5) is given as 

     ( +1) ( ) ( ) ( ) sgn ( ) ,in n e n n n i n   s s x s   (7) 

where 𝛾𝑖(𝑛) = 𝜇𝜆𝑖(𝑛) denotes adaptive zero attraction 

series. Furthermore, the equation derivation of BL0-

LMS algorithm is similar to BZA-LMS algorithm except 

implementing the optimal ℓ0 -norm sparse penalty, 

correspondingly the update recursion equation of BL0-

LMS algorithm is given as 
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where 𝑙 ∈ {1,2, … , 𝑑}, and the imposed approximation 

function for simplification is defined as 
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The updating procedure of mentioned two adaptive 

algorithms BZA-LMS and BL0-LMS is illustrated in the 

left portion of Fig. 4. 

3. Proposed Iterative-Grouping Algorithms 

For the problem of block-sparse signal recovery, 

block-sparse adaptive algorithms exhibit performance 

superiority [8]. However, usually the distribution of 

nonzero atoms in block-sparse signal yields explicit 

block form, as a result that grouping signals basically can 

be classified into several distinct sparsity levels, which 

inspires us to optimize fixed grouping pattern.  

Table 2  BZA-LMS-I algorithm and BL0-LMS-I algorithm. 

① Initialize 𝒔(0)=0, 𝑛=1, set suitable 𝜇, 𝜆, 𝛿, 𝑑, 𝛼 by trial and error 

method; 

② While below termination condition is unsatisfied, 

2
( ) ( 1)  or ;n n n C   s s  

③ Select input signal 𝒂𝑗, and desired signal 𝑦𝑗 contaminated by 

additive noise 𝑣𝑗; 

④ Calculate recursion error, 

( ) ( );i je n y n a s  

⑤ Recursion update by LMS, 

( 1) ( ) ( ) ;Tjn n e n  s s a  

⑥ Grouping classification into three sparsity levels, by fixed lower 

threshold 𝑃ℎ and upper threshold 𝑃𝑙 of recovery signal average 

power ‖𝒔[𝑖](𝑛)‖2
2, separately; 

⑦ Design three AREPAs, i.e. 𝜆ℎ(𝑛) for high sparsity, 𝜆𝑚(𝑛) for 

medium sparsity, and 𝜆𝑙(𝑛) for low sparsity, separately. Then 

obtain corresponding zero attraction parameter 𝛾ℎ(𝑛), 𝛾𝑚(𝑛), 
and 𝛾𝑙(𝑛). For instance, 

      
2 2 2

2 2
( ) ( ) ,h h hn i n i n d       s s  

   ;h hn n   

⑧ Sparse penalty implement by BZA or BL0, 

    ( 1) ( 1) sgn ( ) ,BZA in n n i n   s s s  

          0, ( 1) ( ) ( ) ( 1 ) ( ) ;BL l l i ls i n s i n e n x i n l n g s i n         

⑨ The number of iteration increases by one, 

1;n n   

⑩ End while. 

Fig. 4  Update procedures of fixed grouping and iterative-

grouping sparse adaptive algorithms. 

In this study, we propose a novel iterative-grouping 

pattern in signal process to more adapt to block-sparsity 

structure of original signal, obtaining two proposed 

Iterative-Grouping-based BZA-LMS (BZA-LMS-I) 

algorithm and BL0-LMS-I algorithm. Both our proposed 

algorithms will further improve the recovery accuracy of 

block-sparse signals, by additional grouping classification 

iteratively based on three sparsity levels: high sparsity, 

medium sparsity, and low sparsity, which is shown at the 

bottom of Fig. 3. Moreover, the detailed recovery 

procedure of algorithms BZA-LMS-I and BL0-LMS-I is 

presented in Table 2. The updating procedure of proposed 

sparse solution space: 

adaptive update: LMS

Updating procedure in 3-D domain

sparse penalty: 
BZA/

sparse solution space: 

adaptive update: LMS

32
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adaptive algorithms BZA-LMS-I and BL0-LMS-I is 

illustrated in the right portion of Fig. 4. 

4. Simulation Experiments 

In this experiments section, the signal recovery 

performances are evaluated by mean square deviation 

(MSD). For global parameters, block-sparse signal 𝒔 is 

modeled according to [8]: original signal length is 𝑁 =

400, down-sampling dimension is 𝑀 = 100, the size of 

nonzero atoms in 𝒔 is 𝑆 ∈ {10, 20, 30} separately, block 

sparsity is 𝐾 ∈ {1, 2, 3} accordingly, also the locations 

distribution of nonzero blocks and the nonzero 

coefficients yield discrete uniform. Magnitude of 

nonzero coefficients yield standard Gaussian 

distribution 𝒞𝒩(0,1), each entry of dictionary matrix 𝑨 

is independently generated from Gaussian distribution 

𝒩(0,1/𝑀) . Note that 𝒔  is normalized in our 

experiments, and additive noise 𝒗  is simulated by 

common Gaussian noise s.t. 𝒩(0,1/𝜎𝟐), where standard 

deviation is 𝜎 ∈ {1.7 × 10−2, 3 × 10−2}, and signal-to-

noise ratio (SNR) is defined as 10 log10(‖𝑨𝒔 ‖
2

2
/ 𝜎2), 

result in SNR are set as {10dB,  15dB}  separately. 

Monte-Carlo trials are set as 200 times. 

For private parameters, step-size 𝜇  is set as 0.05, 

tolerance error 𝜀 = 1 × 10−4 , and iteration runs upper 

limit 𝐶 = 1 × 106 for the six sparse adaptive algorithms. 

Additionally, the threshold 𝛿  of AREPA is set as 0.8, 

and initial grouping distance is designed as 20 for the 

four block-sparse adaptive algorithms. Approximation 

equation parameter is 𝛼 = 10  for the three ℓ0 -norm 

sparse penalty algorithms. Eventually, the lower 

threshold of recovery signal average power is  𝑃ℎ =

5 × 10−3  (high sparsity) and upper threshold is 𝑃𝑙 =

5 × 10−2 (low sparsity) for proposed two BZA-LMS-I 

and BL0-LMS-I algorithms. The following three 

experiments are separately versus various aspects, 

namely different levels of block-sparsity, noise strengths, 

and computation complexity. 

Experiment ① : In this experiment, the recovery 

performances of proposed two iterative-grouping-based 

adaptive algorithms BZA-LMS-I and BL0-LMS-I, are 

verified comparing with two block version of greedy 

pursuit algorithms BOMP [4] and BStOMP [17], and 

existing sparse adaptive algorithms and their block 

versions under different block-sparsity. In Fig. 5, total 

number of nonzero atoms 𝑆 = 10, the number of blocks of 

nonzero atoms 𝐾 = 1  in original signal, SNR is set as 

15dB, and step-size of all six sparse adaptive algorithms is 

set as 𝜇 = 0.05 to conduct signal process. It is evident to 

find that fixed grouping adaptive algorithms BZA-LMS 

and BL0-LMS much outperform greedy pursuit algorithms, 

which is consistent with the conclusion in [8]. Rely on the 

explicit adaption to block-sparse structure of original 

signal by proposed iterative-grouping algorithms, the 

MSD performance is further evidently improved without 

reducing obvious convergence speed. In Fig. 6, the block-

sparsity is extended 𝑆 = 30, 𝐾 = 3 , the fixed grouping 

adaptive algorithms BZA-LMS and BL0-LMS exhibit 

good performance even under less sparsity condition. In 

addition, proposed BZA-LMS-I algorithm and BL0-LMS-

I algorithm can more accurately sense block-sparse 

information to obtain improved effects. 

Fig. 5  MSD comparisons vs. Block sparsity (𝑆=10, 𝐾=1). 

Fig. 6  MSD comparisons vs. Block sparsity (𝑆=30, 𝐾=3). 
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Experiment ②: With ambient noise strength 

increases, results in SNR decreases to 10dB in this 

experiment. In this experiment, the sparsity level is set a 

moderate value, i.e. 𝑆 = 20, 𝐾 = 2 , when the fixed 

grouping adaptive algorithms BZA-LMS and BL0-LMS 

still obtain good performance gain as shown in Fig.7, and 

proposed BZA-LMS-I algorithm and BL0-LMS-I 

algorithm exhibit better recovery properties in robustly 

solving block-sparse CS problem. 

Fig.7  MSD comparisons vs. SNR (10dB). 

Experiment ③: In this section, we will explore the 

computation consumption of proposed iterative-

grouping-based sparse adaptive algorithms BZA-LMS-I 

and BL0-LMS-I. One can easily find that both proposed 

algorithms moderately consume increased computation 

time within an acceptable range (approximate 3 times of 

block version of sparse adaptive algorithms), under 

different sparsity, which is literally listed in Table 3. The 

running time is measured using the Matlab (R2013a) 

program under Core i5-4120U 64-bit processor and 

Windows 10 environment. 

Table 3  Running time comparisons (unit: 1 × 10−2s). 

5. Conclusion 

In this paper, we optimized the fixed grouping pattern 

of block-sparse adaptive filtering algorithms to iterative-

grouping pattern in solving block-sparse signal recovery 

problem, to propose two novel adaptive algorithms BZA-

LMS-I and BL0-LMS-I. Simulation experiments verified 

their improved effects, firstly evident performance 

improvement under various block-sparsity levels without 

sacrificing immoderate convergence speed, meanwhile 

reliable robustness against strong noises. At last, the 

computation complexity of our proposed algorithms is 

verified as moderate increase, which also inspires us to 

further improve algorithms efficiency in the future. 
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