
計測自動制御学会東北支部 第 305回研究集会 (2016.11.25)

資料番号 305-4

カーネル法に基づく自己符号化器

Autoencoder Using Kernel Method

裴　岩

Yan Pei

会津大学 コンピュータ理工学部

School of Computer Science and Engineering, University of Aizu

キーワード : カーネル法 (kernel method), 深層学習 (deep learning), 自己符号化器 (autoencoder), カーネ

ル法に基づく主成分分析 (kernel-based principal component analysis), カーネル法に基づく線形回帰

(kernel-based linear regression)

連絡先 : 〒 965-8580 福島県会津若松市一箕町鶴賀 会津大学 コンピュータ理工学部

コンピュータサイエンス部門 裴岩 E-mail: peiyan@u-aizu.ac.jp

1. Introduction

The discovery on visual information process-

ing of brain in neuroscience 6, 13) leads to de-

velopments on the subject that how to simulate

high level data abstractions in artificial intel-

ligence. Deep learning is a such way to imple-

ment this objective. The multiple levels and

abstractions of learning model establish a ba-

sic framework of deep learning. In each level,

it is implemented by multiple linear and non-

linear transforms. From low level feature ex-

traction to high level feature extraction, each

level is a process of feature extraction and se-

lection. Neural network (NN) is an universal

approximator 5), therefore, it is used as a pri-

mary method to implement models and algo-

rithms of deep learning 8). Autoencoder 4),

sparse coding 10), restricted Boltzmann ma-

chine, deep belief networks 3), and convolu-

tional neural networks 9) are primary models

and algorithms in deep learning. Most mod-

els and algorithms of deep learning use NN as

their basic implementation structure.

Autoencoder is a representative algorithm in

NN-based deep learning 3). The objective of

autoencoder is to learn a representation func-

tion of a set of data, which can generate or

learn a generative models of the data. There

are two parts in conventional NN-based au-

toencoder, i.e. an encoder and a decoder. En-

coder part transfers data into another repre-

sentation space, this process is called coder

or latent presentation. The objective of en-

coder tries to present data in form of mean-

ingful information, i.e. feature extraction. De-

coder part transfers data proceed by the en-

coder back to their original representation space

aiming to minimize the error between the orig-

inal data and the data transferred back. If the

error is as small as possible, the algorithm or

method of autoencoder is considered as a great

solution.

Kernel method is one of machine learning al-

gorithms that tries to establish a linear model

with structural risk minimization in feature space

– 1 –

to solve the problem that cannot be dealt with

linear model in its original space. It uses ker-

nel function to establish a relation between

the inner products of original space and pro-

jected high dimensional space. For example,

a ∈ Rd and b ∈ Rd (d ∈ Z+) are two real

number vectors in inner product space, and

there is a feature map φ can transfer these

two vectors into a high dimensional space, i.e.

φ(a) ∈ Rh and φ(b) ∈ Rh (h ∈ Z+ and

d <= h), the kernel function f implements the

relation < φ(a), φ(b) >= f(< a, b >). If a ma-

trix composed by training samples with trans-

formation function, i.e. kernel matrix, is semi-

positive definite matrix, the function can be

used as a kernel function. The kernel method

is established with solid theoretical fundamen-

tal, and its methods or paradigms try to min-

imize structural risk, i.e. shrinkage estimators
7).

This work attempts to use algorithms of ker-

nel method for data transformations in autoen-

coder. The NN and kernel method share some

same characteristics. First, both of them can

be used in classification and regression tasks

in machine learning. Second, NN and kernel

method can transfer data representation form

and dimension, and find a model in transferred

space to deal with the tasks. NN origins from

the neuroscience that mimics biological neural

networks, and it has few theoretical fundamen-

tal to prove the effectiveness of its algorithms

and models. However, the kernel method is

established with inner product simplification

(kernel trick) and statistical learning theory.

We, therefore, believe that kernel method is

a perspective methodology to implement deep

structural machine learning algorithms. In this

paper, we use kernel-based principal compo-

nent analysis as an encoder and kernel-based

linear regression as decoder in an autoencoder

model. This presents the originality of this

work. The proposed method and structure are

evaluated, analysed and discussed using some

image data. If the proposed method is du-

plicated in the form of deep structure, it is

prospected as a promising approach in deep

learning field.

Following this introductionary section, we

review the fundamentals of autoencoder, ker-

nel method, kernel-based principal component

analysis, and kernel-based linear regression in

section 2. The proposed method that uses ker-

nel method to construct an autoencoder model

is described and explained in section 3. The

encoder and decoder are implemented using

kernel-based principal component analysis and

kernel-based linear regression, respectively. In

section 4., we use some images as training sam-

ples to evaluate the performance of proposed

method. Because the image data are a visual

signals, it is easy to evaluate and compare the

performance with our visual perception. Fi-

nally, we conclude the whole work, and present

some open topics and opportunities in the field

of kernel method-based deep learning in sec-

tion 5.

2. An Brief Overview on Au-

toencoder, Kernel Method,

Kernel-based Principal Com-

ponent Analysis, and Kernel-

based Linear Regression

2.1 Autoencoder

The term, autoencoder, is presented as a

method of learning efficient coding using NN
4, 17). The autoencoder is implemented in the

form of NN, it is used to reconstruct its input

signals, i.e. coding presentation. Because the

training process of autoencoder does not need

the label of signal, it is a unsupervised learning

model and method. The autoencoder usually

includes two parts in its structure. The one

is an encoder that transfers input signals into

another space with another presentation form.

The other is a decoder that transfers the trans-

ferred signals back to their original space with

– 2 –

the objective to minimize the error between the

input signals and the transferred back signals.

We describe autoencoder with a formal form.

There are two Hilbert spaces, PP ∈ Rd and

Y Y ∈ Rh (d, h ∈ Z+), and two transforma-

tions, ∆ : PP → Y Y , and Θ : Y Y → PP

(∆ ∈ RhR
d

, Θ ∈ RdR
h

; h, d ∈ Z+). The ob-

jective of training an autoencoder is an opti-

mization problem of ∆ and Θ (an optimization

problem in a function space), that minimizes

the error between input signals and output sig-

nals, e.g. py ∈ PP is an input signal, the op-

timization problem is shown in Eq. (1).

(Θ,∆) = arg min
∆∈RhRd

,Θ∈RdR
h
||py−Θ(∆(py))||.

(1)

From the viewpoint of mathematical transi-

tion, the transformations ∆ and Θ can be im-

plemented not only by NN, but also by other

forms of linear and non-linear transformations.

The autoencoder implementation form is not

limited within the field of NN. Kernel method

is also an effective way to implement such trans-

formation and copes with the optimization prob-

lem of Eq. (1).

2.2 Structural Risk Minimization and

Kernel Method

The fundamental of kernel method lies in

statistical learning theory and principle of struc-

tural risk minimization. There are X ∈ Rd

and Y ∈ R (d ∈ Z+) that follow a certain

and unknown distribution P (X,Y). Machine

learning algorithm tries to find the a function

Y = f(X, γ) can predict the relation between

X and Y , where γ presents a set of parame-

ters that defines f . To evaluate performance of

prediction function f , we define a loss function

L(Y, f(X, γ)) to penalize the errors 2). The ex-

pected risk (Eq.(2)) was defined as a criterion

to select a function f because convex function

can be used as a loss function if it has arity

two, positive range, and L(x, x) = 0 14).

riskexpected(γ) =

∫
L(y, f(x, γ))dP (x, y). (2)

We do not know the distribution of P (X,Y),

so we cannot know the expected risk. However,

we can use training samples to estimate the

expected risk, i.e. empirical risk (Eq.(3)).

riskempirical(γ) =
1

n

n∑
i=1

L(yi, f(xi, γ)). (3)

In the limitation condition, if the number

of training samples are infinity (n → ∞), the

empirical risk can approximate expected risk,

i.e. in Eq. (4).

lim
n→∞

riskexpected(γ) = riskempirical(γ). (4)

However, the over fitting problem often hap-

pens because minimization of riskempirical(γ)

with finite training sample cannot guarantee

the optimal selection of γ. We introduce struc-

tural risk into the optimization of riskempirical(γ)

as in Eq. (5), where Ω is a function that mea-

sures the capacity of a set of functions f with

parameter γ, α is a parameter used to manage

trade off between training error and capacity.

riskstructural(γ) = riskempirical(γ) + αΩ(γ).

(5)

Kernel method tries to minimize structural

risk using kernel trick, i.e. finding optimal

model in projected high dimensional feature

space. For example, support vector machine

tries to find the maximal margin to achieve

this objective.

2.3 Kernel-based Principal Compo-

nent Analysis

Principal component analysis (PCA) is a data

transformation method that pursues to estab-

lish a coordinate system where the training

samples have a maximal total variance 11). It

uses orthogonal transformation to keep the re-

lation of training samples, i.e. inner product,

– 3 –

as the same before and after the transforma-

tion. The total variance of the data that is

projected to a direction v (new constructed co-

ordinate system) can be expressed by Eq.s (6)

and (7), where C is the co-variance matrix of

the data. The objective of the data projection

is to find a new coordinate system where the

total variance has the maximum value. The

aim of this optimization problem is to obtain

a solution of Eq. (8). We can solve this opti-

mization problem by using Lagrangian multi-

plier method or matrix calculus method.

σ2 = vTCv (6)

C =
1

n

n∑
i=1

xixi
T =

1

n
XTX. (7)

v = argmax
v

vTCv. (8)

Kernel-based PCA is the generic form of PCA,

which constructs new coordinate system in a

high dimensional space where the projected

data have maximal total variance 12). It es-

tablishes a relation of co-variance matrix and

kernel matrix (Eq.s (9), κ’s pronunciation is

kappa, X̃T = [φ(x1), φ(x2), ..., φ(xN)]) of pro-

jected data, and tries to calculate the eigen-

value problem of kernel matrix to indirectly

find the eigenvalue problem solution of co-variance

matrix (Eq.s (10)-(14)) . Because we have

an assumption that the projected data is cen-

tred, we need to use kernel matrix to express

a matrix with centred data, i.e. Gram matrix

(Eq. (15), 1N presents a N × N matrix with

1N (i, j) = 1
N).

κ = X̃X̃T . (9)

(κ)u = λu. (10)

(X̃X̃T)u = λu. (11)

X̃T (X̃X̃T)u = X̃Tλu. (12)

(X̃T X̃)(X̃Tu) = λ(X̃Tu). (13)

(C̃)(X̃Tu) = λ(X̃Tu). (14)

κ̃ = κ− 1Nκ− κ1N + 1Nκ1N . (15)

2.4 Kernel-based Linear Regression

Linear regression is a method that estab-

lishes the relation between independent vari-

ables xi ∈ Rd, i = 1, 2, ..., N (d ∈ Z+) and

y ∈ R (Y T = [y1, y2, ..., yN]) (Eq. (16)). Many

methods are used to establish the linear regres-

sion models, such as least square method, in-

terpretation, maximum-likelihood estimation,

etc. If we use least square method to find the

regression model, Eq. (18) is an optimization

problem that considers w as an optimization

target. We establish the normal equations (Eq.

(19)) to solve this problem and try to obtain a

proper w (Eq. (20)).

Y = Xw + ε. (16)

X =


1 xT1
...

...

1 xTN

 . (17)

w = argmin
w

||Y −Xw||2. (18)

XTXw = XTY. (19)

w = (XTX)−1XTY. (20)

With the primary motivation of kernel method,

we can project data X into high dimensional

space (X̄, Eq. (21)) and try to find a linear

relation between projected X̄ and Y . The nor-

mal equations can be re-written as in Eq. (24).

We note the α = X̄(X̄T X̄)−2X̄T y, and use ker-

nel trick to express α with kernel matrix (Eq.s

(26)-(30), κ̄ = 1N×N + κ). Finally, the expres-

sion of kernel-based linear regression is in Eq.

(31).

X̄ =


1 φ(x1)

T

...
...

1 φ(xN)T

 (21)

– 4 –

X̄T X̄w = X̄TY. (22)

w = (X̄T X̄)−1X̄TY. (23)

w = (X̄T X̄)(X̄T X̄)−2X̄TY. (24)

w = X̄Tα. (25)

X̄T X̄w = X̄TY. (26)

X̄T X̄X̄Tα = X̄TY. (27)

X̄X̄T X̄X̄Tα = X̄X̄TY. (28)

κ̄2α = κ̄Y. (29)

α = κ̄−1Y. (30)

Y = X̄w = κ̄−1α = (1N×N + κ)α (31)

3. Autoencoder Using Kernel

Method: towards Model and

Algorithm of Kernel Method-

based Deep Learning

3.1 Kernel Method-based Deep Learn-

ing and Autoencoder

The primary function of autoencoder is im-

plemented by linear and non-linear transfor-

mations, which is carried out by NN 4). NN

is an universal approximator that can approx-

imate any linear and non-linear transforma-

tions with any arbitrary accuracy 5). For sim-

ulating the high level data abstractions, deep

learning model constructs the multiple trans-

formations to implement this process. Data

abstraction in multiple levels and data trans-

formation with multiple linear or non-linear

transformations are two characteristics of deep

learning. From this viewpoint, any meaning-

ful data transformation method with multi-

ple data transformations can implement deep

learning model and its objective, i.e. high level

data abstraction.

Kernel method can implement linear and non-

linear transformations that transfer data from

their original space into a high dimensional

space to find linear learning model. In the

view of data transformation, there is not any

difference between kernel method and NN. Be-

tween each transformation, kernel method can

construct linear learning model to obtaining

meaningful data abstraction with the princi-

ple of structural risk minimization. The kernel

method can be used in the structure of data ab-

straction with multiple levels to implement a

deep learning model and algorithm. However,

the transformation in kernel method have not

been proved as a universal approximator, this

subject needs to further study and investigate

in our future work. From the viewpoint of data

transformation, fuzzy system is also a univer-

sal approximator 15), so that fussy system can

be as well as considered as another implemen-

tation of deep learning.

As a summary, kernel method-based deep

learning has two characteristics. The one is

multiple linear and non-linear transformations

to implement high level dat abstraction. The

other is that linear and non-linear transforma-

tions are constructed by kernel method that

uses kernel trick to find linear learning mod-

els and select data features. In this work, we

investigate an autoencoder implementation by

kernel-based principal component analysis and

kernel-based linear regression (Fig. 1). If the

basic structure is implemented with multiple

levels, it can construct a deep learning model

for classification and regression to implement

high level data abstraction.

3.2 Encoder Using Kernel-based Prin-

cipal Component Analysis

Encoder is a data abstraction process that

tries to transfer data into another representa-

tive space for feature selection and extraction.

As explanation above, the encoder part imple-

ments the transformation ∆ : PP → Y Y , PP

– 5 –

X_1

X_2

.

.

.

X_N

Y_1=P X_1)

Y_2=P X_2)

.

.

.

Y_N=P X_N)

X’_1=w Y_1)

X’_2=w Y_2)

.

.

.

X’_N=w Y_N)

Encoder:

Kernel-based

Principal

Component

Analysis

Decoder:

Kernel-based

Linear

Regression

Y=P X)
X=w Y)

Fig. 1　 concept of kernel method-based au-

toencoder, the encoder part is implemented

by kernel-based principal component analysis,

and the decoder part is implemented by ker-

nel-based linear regression.

is the original space of the data, and Y Y is the

projected space by kernel trick. We use kernel-

based PCA to transfer data from space PP to

space Y Y , and implement transformation ∆.

If polynomial kernel and Gaussian kernel are

used in the kernel-based PCA, the dimension

of Y Y is (r+d−1)!
d!(r−1)! (d is dimension of training

sample, r is the degree of polynomial kernel

function, d ∈ Z+, r ∈ Z+) and infinite, respec-

tively. We can reduce the dimension of original

data, and use only first m (m ∈ Z+,m <= d)

principal components to present the original

data, i.e. feature extraction.

There are several issues need to be consid-

ered in this process. First, the kernel function

and its parameter setting selection is a problem

for obtaining better feature extraction. This

is, in a function space ∆ ∈ RhR
d

, we need to

find a proper or optimal ∆ to implement en-

coder. The kernel function decides the topo-

logical structure of projected high dimensional

space and feature construction. Second, the

principal component selection is also an issue

for feature extraction. We need to analyse and

investigate these two subjects when applying

kernel-based PCA as encoder in implementa-

tion of an autoencoder.

3.3 Decoder Using Kernel-based Lin-

ear Regression

Decoder is used to restore the data back to

their original representation space. It imple-

ments, selects, and optimizes the transforma-

tion Θ ∈ RdR
h

. In this work, we use kernel-

based linear regression to implement this part.

Because the kernel-based linear regression es-

tablishes the relation between multiple vari-

ables xi and one variable y. The xi in Eq.

(16) presents Y1, Y2, ..., YN in Figure 1, Y has

m dimension decided by selection of princi-

pal components of kernel-based PCA. The y in

Eq. (16) is one of dimension of X ′
1, X

′
2, ..., X

′
N

in Figure 1, X ′ has d dimension as the same

as their original input data (X). So we need

to establish the number of d kernel-based lin-

ear regression models to transfer ∆(X) back

to X, i.e. as in Eq. (32), and Θ =
∑d

i=1Θi,

(i = 1, 2, ..., d). We implement the decoder

transformations (Θ) in this form.

xi = Θi(∆(X)). (32)

4. Evaluations and Discussions

4.1 Performance of Proposed Autoen-

coder

Because abstract digital data or classifica-

tion problem can not be visually evaluated,

we use visual image data to evaluate our pro-

posal. We first encoder, and then decoder the

images in our evaluation, the designed autoen-

coder can be considered as an image filter in

this process. We use three images to evaluate

our proposed autoencoder. These images are

grayscale format with 256× 256 pixels (Figure

2-(a)). We use polynomial kernel function with

2 and 3 degree in the kernel-based PCA and

linear regression. The definition of polynomial

kernel function is in Eq. (33), and r = 2 and

r = 3 in the evaluations. The restored images

using our proposed autoencoder are shown in

Figure 2-(b) and 2-(c), which uses polynomial

kernel functions with 2 and 3 degree, respec-

tively.

κ(x, y) = (< x, y > +1)r. (33)

– 6 –

(a) original images, from left to right, they are girl, house, and tree

(b) restored images using polynomial kernel function with 2 degree

(c) restored images using polynomial kernel function with 3 degree

Fig. 2　 Three original test images, and restored images using proposed autoencoder with poly-

nomial kernel functions with 2 and 3 degree, they are all greyscale format images, and the size

of all the images are 256 × 256. We can observe that restored images using polynomial kernel

function with 3 degree are clearer than those using polynomial kernel function with 2 degree. The

structural similarities of three images with polynomial kernel function with 2 and 3 degree are

0.3723, 0.2802, 0.4633 and 0.9292, 0.9998, 0.9998, respectively

– 7 –

Kernel function and its parameter selection

decide the topological structure of high dimen-

sion Hilbert space. The new constructed co-

ordinate system using kernel-based PCA and

kernel-based linear regression model also de-

pend on the selections of kernel function and

its parameter. In this evaluation, we use poly-

nomial kernel function in both encoder and de-

coder with 2 and 3 degree. We can visually

observe that the restored images using poly-

nomial kernel function with 3 degree is bet-

ter than the that using the one with 2 de-

gree. Some of the results using polynomial ker-

nel with 2 degree faults in obtaining a proper

inverse matrix of kernel matrix and solution

of quadratic programming, this is the reason

that the images from polynomial kernel func-

tion with 2 degree are unclear. The first image

of Figure 2-(c) fault in restore with the same

reason.

We use structural similarity 16) to quanti-

tatively evaluate and analyse the restored im-

ages. The µ and σ are the mean value and

variance value in Eq. (34), where c1 = (k1L)
2

and c2 = (k2L)
2 are two variables to stabi-

lize the division with weak denominator; L is

the dynamic range of the pixel-values (typi-

cally this is 2#bits per pixel − 1); and k1 = 0.01

and k2 = 0.03. The structural similarities of

three images with polynomial kernel function

with 2 and 3 degree are 0.3723, 0.2802, 0.4633

and 0.9292, 0.9998, 0.9998, respectively. From

this evaluation, we quantitatively investigate

the data transform performance of our pro-

posed autoencoder. Because the SSIM value

is near 1, it means the original image and re-

stored image have more similarity, the restored

images obtained by polynomial kernel function

with 3 degree are better.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(34)

The encoder and decoder of proposed au-

toencoder have two kernel-based data trans-

formation algorithms, kernel-based PCA and

kernel-based linear regression. The performance

of both algorithms depends on the kernel func-

tion’s selection and their parameter setting. In

this evaluation, we use the polynomial kernel

function with 2 and 3 degree in both of them,

but it is not necessary to use the same kernel

function in kernel-based PCA and kernel-based

linear regression. The proposed autoencoder

has a variety of implementation ways to con-

struct feature abstraction and extraction algo-

rithm by considering training data and kernel

function characteristics. The subject will be

involved in our future work.

4.2 Kernel-based Deep Learning Im-

plementation

In the mathematical viewpoint, autoencoder

concept implements two data transformations.

The first transformation pursues to find the

feature of the training data, and the second

one transfers (restores) back the data into their

original form. If the restored data are as the

same as the original data, the autoencoder can

be considered as a great algorithm. If we ap-

ply this autoencoder with multiple levels, the

whole structure can implement high level data

abstraction so that the algorithm can simulate

the perception as our human brain. The con-

ventional autoencoder uses NN as a basic unit

for data transformation, the primary idea of

kernel method also can be considered as a tool

of data transformation. In this paper, we ini-

tially implemented a kernel-based autoencoder

and evaluated its performance. This is one of

the originality of this work.

The primary philosophy of kernel method

lies on statistical learning theory and princi-

ple of structural risk minimization. However,

it is also a method of data transform that has

potential possibility to implement high level

data abstraction in deep learning algorithms.

The direct way to implement kernel-based deep

learning is duplicately applying kernel trans-

formation φ(φ(...φ(x))) 1). The obvious is-

– 8 –

sue of this implementation ignores the objec-

tive of deep learning that pursues to obtain

the data feature between transformations and

implements high level abstraction rather than

simply simulates deep structure. Designing a

proper kernel function can simulate data trans-

formation, but cannot obtain the data feature

so that implements high level data abstraction.

In each level of data transformation, designing

a proper kernel function, setting efficient pa-

rameter, and finding data feature to implement

high level data abstraction are three subjects

to improve this method.

The second way to implement kernel-based

deep learning does not only simulate the deep

structure of kernel transformation, but also ap-

ply kernel-based machine learning algorithm

to construct high level data abstraction. This

work uses kernel-based PCA and kernel-based

linear regression for feature extraction, but it

is not limited in these two algorithms, other

kernel-based algorithms also can be involved

in the proposed algorithm structure. The al-

gorithm selection of autoencoder, kernel func-

tion’s selection and design, construction of high

level data abstraction are potential research

subjects in our future work.

5. Conclusion and FutureWorks

We proposed to use kernel-based algorithms

in a deep structure to implement high level

data abstraction. A kernel method based au-

toencoder is initially designed, implemented and

evaluated in this work. The encoder and de-

coder parts are implemented by kernel-based

PCA and kernel-based linear regression, respec-

tively. Kernel-based PCA transfers the data

into a high dimensional Hilbert space for ob-

taining constructed data feature, kernel-based

linear regression transfers the data back to their

original form for evaluating the performance of

autoencoder. We found that selection of ker-

nel function decides the deigned autoencoder,

and fault in matrix inverse influences the al-

gorithm applications of kernel method. If we

duplicately apply proposed autoencoder in a

deep structure, we can implement deep learn-

ing algorithm with kernel method.

The algorithm selection, kernel function and

its parameter selection, and deep learning al-

gorithm evaluation are three remaining sub-

jects in our future work. First, the kernel-

based PCA and kernel-based linear regression

were initially evaluated in our designed autoen-

coder, but other kernel method-based algorithms

also can be used in this framework. We hope

this study subject can lead to more implemen-

tations in kernel method based deep learning

algorithm, e.g. kernel-based discriminant anal-

ysis, support vector machine, etc. Second, from

our evaluations, performance of designed au-

toencoder depends on the selection of kernel

function. But, we have not known the optimal

selection and its conclusion on selection issue of

kernel function and its parameters. This leads

to the further study on the optimal selection

subject of kernel function in kernel-based deep

learning. Third, in this work, we only imple-

mented one level autoencoder, and simply eval-

uated its performance. We need to apply this

structure in multiple levels to implement high

level data abstraction. These and other study

subjects will be involved in our future works.

参考文献
1) Y. Cho and L. K. Saul. Kernel methods for

deep learning. In Advances in neural informa-
tion processing systems, pages 342–350, 2009.

2) T. Hastie, R. Tibshirani, and J. Friedman.
The elements of statistical learning, volume 1.
Springer series in statistics Springer, Berlin,
2009.

3) G. E. Hinton, S. Osindero, and Y.-W. Teh.
A fast learning algorithm for deep belief nets.
Neural computation, 18(7):1527–1554, 2006.

4) G. E. Hinton and R. R. Salakhutdinov. Re-
ducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

5) K. Hornik, M. Stinchcombe, and H. White.
Multilayer feedforward networks are univer-

– 9 –

sal approximators. Neural networks, 2(5):359–
366, 1989.

6) D. H. Hubel and T. N. Wiesel. Receptive
fields of single neurones in the cat’s striate
cortex. The Journal of physiology, 148(3):574–
591, 1959.

7) W. James and C. Stein. Estimation with
quadratic loss. In Proceedings of the fourth
Berkeley symposium on mathematical statis-
tics and probability, volume 1, pages 361–379,
1961.

8) Y. LeCun, Y. Bengio, and G. Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

9) Y. LeCun, B. Boser, J. S. Denker, D. Hender-
son, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation,
1(4):541–551, 1989.

10) B. A. Olshausen et al. Emergence of simple-
cell receptive field properties by learning a
sparse code for natural images. Nature,
381(6583):607–609, 1996.

11) K. Pearson. Liii. on lines and planes of clos-
est fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11):559–
572, 1901.

12) B. Schölkopf, A. Smola, and K.-R. Müller.
Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

13) C. J. Shatz. David hunter hubel (1926-2013).
Nature, 502(7473):625–625, 2013.

14) A. J. Smola, B. Schölkopf, and K.-R. Müller.
General cost functions for support vector re-
gression. In IN Proceedings of the 8th Inter-
national Conference on Artificial Neural Net-
works. Citeseer, 1998.

15) L.-X. Wang and J. M. Mendel. Fuzzy ba-
sis functions, universal approximation, and or-
thogonal least-squares learning. IEEE trans-
actions on Neural Networks, 3(5):807–814,
1992.

16) Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–
612, 2004.

17) D. Williams and G. Hinton. Learning repre-
sentations by back-propagating errors. Nature,
323:533–536, 1986.

– 10 –

