内視鏡下レーザー治療のための温度推定法に関する基礎検証

Basic verification for temperature estimation of endoscopic laser surgery

○関健史*,高橋朗人*,岡潔**,長縄明大*

○ Takeshi Seki^{*}, Akito Takahashi^{*}, Kiyoshi Oka^{**}, Akihiro Naganawa^{*}

*秋田大学, **株式会社 OK ファイバーテクノロジー

*Akita University, **OK Fiber Technology Co., Ltd.

キーワード: レーザー治療 (Laser treatment), 温度推定 (Temperature estimation)

連絡先: 〒 010-8502 秋田県秋田市手形学園町 1–1 秋田大学大学院 理工学研究科 システムデザイン工学専攻 機械工学コース

関健史, Tel.: (018)889-2729, Fax.: (018)889-2729, E-mail: seki@gipc.akita-u.ac.jp

1. はじめに

手術における患者への負担をできる限り少な くすることを目的とした低侵襲治療は、患者の QOL (Quality Of Life : 生活の質) 向上などの 利点から一般的な治療として広まってきている. 内視鏡, ファイバスコープ, カテーテルなどの 器具を使用した治療が低侵襲治療主流であるが, これらの器具から直接医師が得られる生体情報 は乏しく, 医師の経験や直感で処置や診断の判 断,決定されているのが現状である.具体例と して, 羊水中の胎盤上の血管にレーザー照射し て止血する胎児外科治療のある処置では,(a)血 流計測,(b)距離計測,(c)形状計測,(d)レー ザー出力制御,(e)温度計測が処置に必要な情報 だと考えられるが、実際には医師の経験や直感 で判断,決定されている.これまでの成果によ り, 外径1~2 mmの光ファイバスコープ1本を 体内に挿入するだけで,少なくとも(a)血流計 測,(b)距離計測,(c)形状計測,(d) レーザー

出力制御が同時に実現できる可能性が得られた. しかしながら,現状のレーザー出力制御技術で は,接触式の熱電対を用いたフィードバック制 御系を構築しなければならず,体内に熱電対を 挿入しなければならない.そこで,複合型光ファ イバスコープを用いた非接触による照射部温度 技術の確立が,解決すべき課題となっている.

上記の背景およびこれまでに得られた研究成 果をもとに、本研究では、レーザー治療装置に 適用できる温度計測手法に関する基礎的研究を 行い、医師の経験や直感に頼らず適切な治療を 行うための治療方法への基板となる研究を行う. 研究機関内に、以下のことを明らかにすること を目的とした.(1)照射部温度と生体組織の光 学特性(吸収、散乱、反射)の関係を明確にする ため、計測用レーザーおよび照射部からの反射 光を受光するプローブ、分光器などからなる解 析部で構成される検証システムを構築する.(2) 未照射部と照射痕部の光学特性(吸収、散乱、反 射)の違いを計測し、照射部温度と光学特性変 化と関係を明らかにする.(3)検証システムを レーザー治療装置に組み込み,計測用プローブ を用いてレーザー照射および対象からの反射光 の受光を同時に行えるようにする.(4)温度推 定用ソフトウェアの構築と精度検証試験を実施 する.

2. 組織温度と光学特性の検証

生体組織に対してレーザー光を照射すると, その光の一部が熱に変換されることで組織を加 熱される.そのときの加熱温度によって変化す る組織の光学特性がどのように変化するか明確 するため,ここでは,対象組織を指定した温度 まで加熱・保持した状態をつくり,計測用光と して用いる広波長域を持つ白色光源の反射光強 度の変化を検証する.

2.1 実験装置

Fig.1に示す検証装置は、計測用光である白 色光源 (HL-2000HP, 波長域:約360~2000 nm Ocean Optics) とデータ解析用 PC を共通使用と し,反射光強度を解析するための分光器の波長 域の違いに応じて,可視光領域計測用として,7 本の光ファイバが内蔵された計測用プローブ(R-600-7-UV-125F, Ocean Optics) と分光器 (Maya-2000Pro, 波長域:約200~1120 nm, Ocean Optics),近赤外領域計測用として、計測用プロー ブ(R-200-7-VIS-NIR, Ocean Optics)と分光器 (NIR-Quest, 波長域:約900~1722 nm, Ocean Optics) をそれぞれの領域に合わせて用いる. Fig. 2 は検証装置の構成図を示しており、白色光源か ら照射された光はプローブの光ファイバを通し て先端から照射され、対象からの反射光は別の 光ファイバにより受光し,分光器により分光さ れ,解析用PCにより解析,記録が行われる.ま た, レーザー照射などにより加熱されることで 変性・凝固した組織を模擬するため、温度制御可 能なホットプレート (ND-1, アズワン)の上に,

Fig. 1 Overview of experimental setup.

Fig. 2 Schematic of experimental setup.

生理食塩水を入れたビーカをのせて加熱できる ようにした.実験の際は,生体組織を模擬した トリ胸肉を生理食塩水により指定の温度まで加 熱した後,この鶏胸肉の光学特性を計測できる ように,プローブは鉛直下向きで,プローブと 試料の間の距離を0mmとして固定した.組織 温度は,ホットプレートにより30~80度までの 10度刻みのほかに室温,55度で温度調整した生 理食塩水中に10分間入れて加熱した試料の反 射光強度の計測を同条件で3回繰り返した.な お,未加熱試料の反射光強度のAUC(Area Under the Curve;曲線下面積)を1としたとき, 各温度で加熱後の試料から得られる反射光強度 のAUCの比を評価した.

Fig. 3 Results of wavelength (visible band).

Fig. 4 Results of wavelength (near-infrared band).

2.2 結果

Fig. 3,4 はそれぞれ可視領域,近赤外領域で 計測した各加熱温度での反射光強度の変化を示 しており、横軸が波長、縦軸は強度を示してお り、加熱温度の違いをグラフの色別で示してい る.この結果をもとに各加熱温度でのAUC比を 求めた結果を Fig. 5,6 にそれぞれ示す. この結 果より,可視領域,近赤外領域の結果ともに,室 温から 40 度まではほとんど AUC 比に変化はな く,加熱温度が50~55度を越えると加熱温度と ともに AUC 比が増加し, 70 度以上では, AUC 比の増加が見られないことがわかる.加熱温度 が50度付近からACU比が増加し始める原因と して、約60度で発生する試料のたんぱく変性が 発生していることが考えられる.また,70度以 上で AUC 比の増加が見られないのは、加熱時 間10分の間に試料全体のタンパク変性が止まっ たためと考えられる.以上のことから、組織温 度が約50度以上になると、温度とAUC比に相 対関係があることがわかった.

Fig. 5 Results of AUC ratio (visible band).

Fig. 6 Results of AUC ratio (visible band).

レーザー照射時の光学特性変化 の検証

前章では、特定の温度に調整された組織に対 する AUC 比の変化について検証を行っていた が、リアルタイムに加熱しているときの光学特 性の変化については検証していなかった.そこ で、本章では、レーザーによる組織加熱中にお ける温度と光学特性である AUC 比の関係をリ アルタイムに計測し、その関係について検証を 行う.なお、前章の結果より、可視領域、近赤外 領域ともに、加熱温度に対する AUC 比の変化 はほぼ同等であったことや、波長域全体で増減 していたことから、本章では、治療用レーザー の波長と同波長の AUC 比について検証するこ ととした.

3.1 実験装置

レーザーによる加熱変性中における光学特性 の変化を計測する必要があるため, Fig.7 で示 した検証装置の構成のように, レーザー光源(波

Fig. 7 Experimental setup using medical laser device.

長:980 nm, 最大出力:45 W, ユニタック)を 白色光源の代わりに組み合わせた.これにより, プローブの光ファイバを通してレーザー光の照 射および反射光の受光をリアルタイムに実行可 能となる.併せて、治療用レーザーを試料へ照 射した際の温度変化を定量的に評価する目的で, 熱電対を用いた温度測定の構成も同図に示す. ここで, 試料とプローブ間距離を5mmのとき, プローブ先端から出射されたレーザーは直径約 2.26 mmの円形で試料に照射されることを考慮 し,照射時の加熱温度を,照射中心から0,1,2 mm 離れた位置, 深さ 0.5 mm に先端がくるよ うに、シース直径 0.15 mm の K 型熱電対を試 料内部に設置した.熱電対で得られた照射部温 度は、変換回路、AD 変換器を介して PC に記 録される. 試料である鶏胸肉は, 熱電対の設置 の際の容易さから、ペースト状にしたものを用 いており, レーザー装置の操作, 温度計測, 反 射光強度の記録は同一の PC によりサンプリン グ周期 50ms で実施できるようにソフトウェア を作成した.

3.2 結果

3.2.1 温度とAUC比の計測

Fig.8は(3)で示した検証装置を用いて試料に 対して 5W のレーザーを 300 s 照射した際の温 度と AUC 比の結果を示している. 横軸は時間, 右縦軸は温度, 左縦軸は AUC 比を表す. この 結果より, レーザー照射開始とともに,温度が

Fig. 8 Results of AUC ratio and temperature measurement.

Fig. 9 Comparison of temperature and first order lag element model

上昇し始め,約150 s後以上になると,その温 度上昇が直線的になっていることがわかる.ま た,レーザー照射中心からの距離が近い程,全 体的な温度が高い傾向であることもわかる.一 方で,AUC比は,レーザー照射開始とともに 直線的に上昇していることがわかるが,これは, レーザー照射による熱変性による影響であると 考えられる.

3.2.2 実験結果のモデル化

前節の結果をもとに、レーザー照射による温度 と AUC 比の変化をそれぞれ1次遅れ要素 ($G_1 = K_1/(1+T_s)$)と積分器 ($G_2 = K_2/s$) でそれぞれ モデル化し、実験結果と比較したものを Fig. 9, 10 に示す.なお、それぞれのモデルパラメータ (K_1 , K_2 , T) は試行錯誤により、決定した.この結果 より、実験値とモデルの結果はおおよそ一致して おり、妥当なモデルを設計できていると考える.

Fig. 10 Comparison of AUC ratio and integrating element model.

3.2.3 温度推定式の構築と精度検証

前節の実験では、一定出力のレーザー照射で あり、得られた温度とAUCの時間応答はステッ プ応答とみなせる.ここで、伝達関数の合成を 利用することで、AUC比を入力信号、中心温度 の結果を出力信号とした伝達関数モデルを構築 できる.先に求めた温度とAUC比の各伝達関 数モデルより、入力信号であるAUC比から中 心温度までを表す伝達関数は $G_3 = G_1/G_2$ とな る.ここで得られた伝達関数は、AUC比の変化 から照射部中心温度を推定する式となる.

Fig. 11 は,実験で得られた照射部中心温度と, 実験で得られた AUC比をもとに推定式を用いて 推定した温度を比較した結果の一例を示す.同 条件で実験を5回行った結果,全体の誤差平均 は 15~60 度となり,推定精度が今後の課題と なった.誤差平均が非常に大きくなった原因と して,推定式として用いた伝達関数モデルの次 数の少ない単純なモデルを用いたことによるモ デル化誤差が考えられるが,モデル化誤差を少 なくするために,複数の伝達関数を組み合わせ るといった改善策を検討している.

4. おわりに

本研究では,レーザー照射時の照射中心温度 を推定するための手法として,レーザー光の反 射光強度の変化を利用した方法について検討し た.具体的は,加熱による組織変性によって変

Fig. 11 Comparison of true temperature and estimation temperature.

化するレーザー光の反射光強度の変化を入力信 号,照射部中心温度を出力信号とした伝達関数 をあらかじめ構築することにより,反射光強度 から中心温度を推定できる方法である.今後は, より推定精度を高めるための伝達関数の検討や, 生体組織に対する検証が課題である.熱電対や サーモグラフィといった温度センサでの計測が 困難である内視鏡下レーザー治療の場合,本手 法を確立することは,レーザー治療における安 全性や治療効果の向上にも貢献できる可能性が あると考えられる.

謝辞本研究の一部は JSPS 科研費 JP26820081 の助成を受けたものである.

参考文献

- 1) 粟津邦男 (編): 赤外レーザー医光学,大阪大学 出版会 (2008)
- 2) 粟津邦男, Steven L. Jacques,本多典広,間久 直: 生体組織の光学特性値計測一光線力学療法 の基礎技術を例に一,機能材料, 33–11, 66/69, シーエムシー出版 (2013)