バルーンを用いた消化管硬さ評価に関する研究

Study on Hardness Evaluation of Gastrointestinal Tract Using a Balloon

○伊藤 裕太*, 平澤 富士子*, 福田 康義**, 小松 和三*, 西島 和俊**, 関 信輔**, 関 健史*, 長縄 明大*

○ Yuta Ito*, Fujiko Hirasawa*, Yasuyoshi Fukuda**, Kazumi Komatsu*, Kazutoshi Nishijima**, Shinsuke Seki**, Takeshi Seki*, Akihiro Naganawa*

* 秋田大学 大学院理工学研究科 システムデザイン工学専攻 ** 秋田大学 バイオサイエンス教育・研究サポートセンター 動物実験部門

* Department of Systems Design Engineering, Graduate School of Engineering Science, Akita University

** Animal Research Laboratory, Bioscience Education-Research Support Center, Akita University

> **キーワード**: 消化管(Gastrointestinal Tract),硬さ評価(Hardness Evaluation), バルーンカテーテル法(Balloon Catheter), 圧力応答(Pressure response)

連絡先: 〒010-8502 秋田県秋田市手形学園町1番1号 秋田大学大学院 理工学研究科 システムデザイン工学専攻 機械工学コース 伊藤裕太, Tel/Fax: (018)889-2971, E-mail: m8017606(at)s.akita-u.ac.jp

1. 緒言

消化管は、口腔、咽頭、食道、胃、小腸、大腸から なる管状の器官・臓器であり、摂取した食物の消化 や栄養の吸収など、生命維持に欠かすことのできな い働きを持つため、がんや臓器不全などの消化管疾 患は早期発見が重要である.一方、消化管疾患の原 因の一つとして、組織線維化が挙げられる¹⁾.組織 線維化とは、障害組織の治癒過程にみられる生体適 応反応であるが、過剰な細胞外基質の蓄積により細 胞組織は硬化し、重大な疾患をもたらす.また、線 維化は、臓器の終末期に共通してみられる病態であ るため、その解明や診断法、治療法の研究が進めら れている.

現在,組織線維化を測定する方法として血液検査

や超音波検査, CT, MRI を用いた検査などがある ^{2),3)}.しかし,いずれの測定方法も線維化部分を間 接的に測定するものであり,正確な線維化の進展度 や硬さを測定することはできないほか,観察視野が 狭いこと,全体像が把握し難いこと,肥満体等の被 験者の体系の影響を受けやすいこと等の間接的な測 定方法ゆえの欠点がある.

一方,著者らはバルーンカテーテルを用いた小腸 運動計測法を考案した⁴⁾.この方法では,カテーテ ル先端部に配置されているバルーンを,腸管内で拡 張して管壁に接触させて留置し,小腸運動がバルー ンを加圧する際の内圧変化を計測する.その結果, 小腸の運動状態を把握することができ,これまで健 常者に対する計測結果⁵⁾,実験動物に対する計測結 果⁶⁾,慢性偽性腸閉塞を発症した患者に対する計測 結果⁷⁾などを報告してきた.

本研究では、この手法を拡張し、バルーンカテー テルを用いて消化管の硬さを計測する方法について 検討を行っている.その方法は、小腸運動計測の際に はバルーンを腸管内で拡張して留置するのみであっ たが、硬さ計測ではバルーンを拡張する際の圧力変 化応答をセンサで測定し、その応答曲線から硬さを 判断するものである.本発表では、計測原理と装置 の概要、ならびにアクリルパイプに対する実験結果 と、実験動物の腸管に対して実施した結果について 報告する.

2. 硬さ計測法

2.1 計測原理

バルーンカテーテルを消化管内まで挿入し, 蒸留 水あるいは空気を注入し徐々にバルーンを膨らませ ると, バルーンが腸管内壁と接触し, やがて腸管を 押し拡げるように拡張する.このとき, 腸管壁が組 織線維化によって硬くなっていると仮定すると, バ ルーンの拡張に対し腸管壁は拡がりにくくなるため バルーンは管壁より力を受けることとなり, バルー ン内圧が高くなると考えられる.このため, 消化管 内でバルーンを拡張させ, 加圧しながら圧力上昇応 答を圧力センサを用いて計測し, その傾きなどの違 いから腸管壁の硬さの違いを判別することができる と考えられる.

2.2 装置構成

Fig. 1 にシリンジのプランジャを押してバルーン を拡張することを可能とする加圧装置の模式図を示 す.加圧装置は,DC モータ,ボールねじ,押し板, シリンジ,変位センサなどで構成されている.

Fig. 2に硬さ計測のための装置構成の全体写真を 示す.マイコンにはArduinoを用い,動作プログラ ムを実行すると,指令電圧はモータドライバを介し 加圧装置のDCモータに送られる.モータが駆動す ると,ボールねじによって押し板が直動方向に動き, シリンジが押されバルーンが拡張する.その際の圧 力は,圧力センサによって,また押し板の移動量は 変位センサによって測定され,これらの測定結果は データロガーを介してPC内に取り込まれる.

Fig. 2 System conguration.

2.3 バルーンカテーテル

バルーンカテーテルには,カテーテル先端部にバ ルーンが配置されており,主に管腔臓器が狭窄や閉塞 している際に拡張する目的で使われる医療機器であ る.その大きさなどは,使われる臓器により異なる. Fig. 3 に硬さ計測の目的で製作したバルーンカ テーテルを示す.バルーンにはポリウレタン素材の ものを用い,長さは約 30 mm,最大直径は約 36 mm である.この大きさは,人の消化管のサイズを下に 決定した.

2.4 フィードバック制御系

本研究では、加圧装置の押し板を一定速度で動作 させるため、変位センサを用いたフィードバック制 御系を構成した。Fig. 4 に加圧装置フィードバック 制御系のブロック線図を示す。ここで、*P*(*s*) は制御 対象、*C*(*s*) はコントローラを表し、押し板の移動量 が変位センサを用いてフィードバックされる.なお、

Fig. 3 Balloon catheter.

Fig. 4 Block diagram of the feedback control system.

rは押し板の移動量の目標値, uは制御対象 P(s) への指令電圧, y は押し板の移動量である. コントロー ラC(s)は,式(1)で表されるように PI 制御型とし, ゲインは試行錯誤した結果, $K_p = 72, K_i = 66$ と した.

$$C(s) = K_p + \frac{K_i}{s} \tag{1}$$

3. アクリルパイプ実験

3.1 実験条件

動物実験を実施する前に,アクリルパイプに対す る検証を行った.対象は,内径が20mmのアクリ ルパイプとし,腸管の弾力性を再現するため,パイ プに溝を3ヵ所開けたものを用意した.これにより, 加圧するバルーンが溝から漏れ出して拡張を続ける ことができるようになり,その結果,弾力性を持つ 腸管を再現することができるようになると考えられ る.また,この弾力性が失われた線維化状態を模擬 するため,開けた溝を塞ぐことができるようポリエ チレンシートを準備し,溝部の全体を覆った場合と 半分覆った場合,シートを用いなかった場合の3つ の実験条件で計測を行った.なお,加圧装置には1

Fig. 5 Measurement results of the acrylic pipe.

s 間に 1 ml の一定速度で 10 秒間バルーンに空気を 注入したのち,5 秒間停止する動作をさせた.

3.2 結果と考察

Fig. 5(a) に圧力応答結果, Fig. 5(b) に (a) の応 答を微分して傾きを算出した結果を示す.本研究で は,結果を比較するため,無負荷(机上)での計測 と,シートで作成した円筒での計測結果も追加した. Fig. 5(a) より,シートを用いなかった条件(実線) では加圧終了時に最高約6.8 kPa,シートで半分覆っ た条件(一点鎖線)では最高約7.3 kPa,シートで 全体で覆った条件(破線)では10 kPa センサのレ ンジを超えるような結果が得られた.このことから, バルーンがアクリル管内部で接触する際の面積の大 きさによって圧力応答に違いが生じることがわかる. なお、いずれの条件でも、約5~6s付近から圧力上 昇が徐々に生じていることがわかる.このため、バ ルーンの拡張の様子を確認したところ、6s時点で アクリルパイプ内面と接触しているのが確認された. したがって、バルーンとアクリルパイプが接触した ことで圧力上昇が生じたことがいえる.

一方, Fig. 5(b) から, 0~5 s までどの条件でも 同じような傾きであるのに対し, 6 s 以降から傾き に違いが出始めることがわかる. 8 s 時点で,シート 無しの条件(点線)では約 0.85 kPa/s,シートで半 分覆った条件(一点鎖線)では約 0.91 kPa/s,シー トで全体で覆った条件(破線)では約 1.65 kPa/s で あった.以上のことから,バルーンが設置される条 件下,すなわち管壁の線維化部分の接触面積の大き さの違いが現れていることがわかる.

4. 動物実験

4.1 実験条件

実験動物は,生後約3ヶ月の家畜豚(体重31kg, 全長100 cm)を用いた.計測部位は,豚の空腸部 とし,豚の腹部を切り開きバルーンカテーテルを直 接空腸へ挿入する生体内計測,空腸部を約250 mm 切出したサンプルを用いる切出し腸管計測の2つの 計測を行った.また,擬似的に組織線維化状態を再 現するため,腸管を60℃のお湯で30秒間茹で,温 度変性をかけた条件での計測も同様に行った.なお, 加圧装置には1秒間に1 mlの一定速度で7 s 間バ ルーンに空気を注入したのち,5 s 間停止する動作 をさせた.

4.2 結果

Fig. 6(a) に圧力応答結果, Fig. 6(b) に圧力値を 微分し圧力応答の傾きを算出した結果を示す. 結果 を比較するため, 無負荷(机上)での計測結果を追 加した. 腸管計測では, 正常な腸管と温度変性をか けた腸管どちらも最大圧力値が約3 kPaで, 圧力応 答の違いもみられなかった. 一方, 切出し腸管計測 では, 正常な切出し腸管の最大圧力値が約 2.8 kPa に対し, 温度変性をかけた切出し腸管は約 3.3 kPa

Fig. 6 Measurement results of animal experiments.

で,圧力応答も立ち上がりから大きく,違いがみら れた.

4.3 考察

Fig. 6(a) の生体内計測の結果では,温度変性の有 無による圧力応答の違いがみられなかった.これは, 腸管を直接お湯に入れたので,温度変性が外側のみ に留まり,内側の組織まで十分に温度変性が行えな かったことが原因として考えられる.そのため,生 体内計測では実験条件が適切に設定できなかったと いえる.

一方, Fig. 6(a) の切出し腸管計測の結果では, 圧 力応答の違いがみられ, 約 0.5 kPa の圧力差が生じ ているのがわかる.また, Fig. 6(b) の立ち上がりの 傾きをみると,正常な切出し腸管は約 0.21 kPa/s に 対し,温度変性をかけた切出し腸管は約0.53 kPa/sと,約2.5 倍の大きさであった.

以上のことから,正常組織と温度変性がかかった 組織の硬さの違いが,圧力応答の違いとして表れて いることがわかる.しかしながら,腸管を切出して 行った計測であるため,腸管が生きている状態での 計測で同様に硬さの違いが読み取れるか検証を行う 必要がある.また,正常組織と温度変性組織の結果 の比較による相対的な評価のみにとどまったので, 今後は硬さの度合いを数値化するような絶対的評価 方法を検討していく必要がある.

5. 結言

本研究では,バルーンカテーテル法を用いて消化 管の硬さ計測を行うための方法について検討し,以 下の結果を得ることができた.

- アクリルパイプを用いた実験では、溝の開 いたパイプにシートを用いて接触面積を変え 計測を行い、バルーンへの接触面積の大きさ の違いが圧力応答や傾きをみることで判別可 能であることがわかった。
- 豚の腸管を用いた動物実験では,正常な腸 管と擬似的に組織線維化を起こすため温度変 性をかけた腸管を用いて計測を行い,組織の 硬さの違いが圧力応答の違いとして表れるこ とがわかった.

今後は,引き続き動物実験による検討を進めるとと もに,硬さを数値化するような評価法についても検 討する予定である.

参考文献

- 1) 木村久仁子,岩野正之:組織線維化の進展機序,日本臨床免疫学会会誌,32-3,160/167 (2009)
- 小川眞広: 肝超音波診断の New Technology SMI と SWE - Propagation の必要性と臨床的有用性-, Medical Tribune, 3/5 (2015)
- G. Masselli and G. Gualdi : MR Imaging of the Small Bowel, Radiology 264-2, 333/348 (2012)
- 4) 石川寛子,岡潔,長縄明大,芳野純治,若林貴夫,渡 邊真也,内藤岳人:イレウスチューブを用いた小腸 内圧計測システムの開発,日本機械学会論文集C編, 75-756,2359/2361 (2009)

- 5) 長縄明大, 岡潔, 成田賢生, 芳野純治, 乾和郎: バ ルーンカテーテルを用いた消化管運動計測の検討, 第 55 回日本平滑筋学会総会抄録集, pp. 64 (2013)
- 6) 細川慎二,長縄明大,関健史,平澤富士子,小松和三, 岡潔,福田康義,西島和俊,関信輔,眞部紀明,春間 賢,芳野純治:イレウスチューブを用いた小腸運動 計測の評価に関する検討,計測自動制御学会第17回 システムインテグレーション部門講演会(SI2016), 2095/2099 (2016)
- 7) N. Manabe, A. Naganawa, S. Hosokawa, K. Oka and K. Haruma: Assessment of Small Bowel Motility in patients with Small Bowel Obstruction: A Newly Developed Measurement Technique for Monitoring Small Bowel Motility by Using an Ileus Tube, Digestive Disease Week (DDW) 2017, Su1567 (Abstracts on USB) (2017)