計測自動制御学会東北支部 第 315 回研究集会 (2018.5.21) 資料番号 315-7

ストカスティック演算によって実現された FIR フィルタにおける内部雑音に関する検討

Study on Internal Noise of FIR Filters Implemented with Stochastic Computing

○鎌田裕成,越田俊介,阿部正英,川又政征

 \bigcirc Hironari Kamada, Shunsuke Koshita, Masahide Abe, Masayuki Kawamata

東北大学大学院工学研究科電子工学専攻

Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

キーワード: ストカスティック演算 (stochastic computing),FIR フィルタ (FIR filter),分散伝達関数 (variance transfer function)

連絡先: 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-05
 東北大学 大学院工学研究科 電子工学専攻 川又・阿部(正)研究室
 鎌田 裕成, Tel.: (022)795-7095, Fax.: (022)263-9169, E-mail: kamada@mk.ecei.tohoku.ac.jp

1. まえがき

ストカスティック演算(以下 SC)は、近似計算法 のひとつで、数値を確率的に表現し演算する手法で ある.従来の二進数演算と比較して大幅に回路規模 を削減することが可能な手法として、近年注目を集 めている.SCの歴史は古く、1960年代後半には 演算手法が確立された¹⁾.演算回路が小型である、ソ フトエラー耐性が高いなどの利点が存在する一方で、 演算結果が確率的である点、演算時間が長くなって しまう点などを理由に、SCが使われることはほと んどなかった.その SC が近年、注目を集めている 理由としては、デバイスの小型化や省電力化を目的 として回路規模の削減が求められる場合が増えてい る挙げられる.

SC は画像処理, ディジタルフィルタ, 符号化, ディープラーニングなど, 広い分野での応用が検討されている²⁻⁶⁾. SC では演算結果が確率的に変動するため, 出力に確率的な変動が含まれていてもそれ

を許容できるアプリケーションへの応用が望ましい. 逆に,確率的変動が許容できるアプリケーションで あれば,SCを用いることで回路規模の大幅な削減 を実現することが可能となる.

SC の確率的ふるまいが演算結果に与える影響に ついては、未だ詳しく明らかにされていない. そこ で本稿では、SC をディジタルフィルタに適用した際 に、SC による演算結果の確率的変動がフィルタ出 力にどのような影響を与えるかについて考察する.

2. ストカスティック演算

本章では,SCの基礎について説明する.初めに, SCにおける数値の表現法について説明する.次に, SCを構成する演算素子と2進数との変換について 説明する.

2.1 数値の表現

SC では、ビット列内のビット '1' の存在確率に よって数値を表現する. 例えば, 次の 2 つのビット 列, (1 1 0 0) と (0 1 1 0) はどちらも 1/2 の確率で ビット '1' が存在している. この 2 つは異なる並び のビット列であるが, SC においては等しい数値を 表現する. 以下では,前述のように確率によって数 値を表現するビット列のことをストカスティック数 (SN) と呼ぶ.

SN の数値表現は,ユニポーラ表現とバイポーラ 表現が知られている.以下ではこの2種類の表現法 について説明する.

ユニポーラ表現では、SN におけるビット '1' の存 在確率を、そのまま数値として扱う. すなわち、語 長 N or SNX がユニポーラ表現によって表す数値 \hat{x} は、以下のように定められる.

$$\hat{x} = \frac{X 内 \mathcal{O} \nvDash \mathcal{V} \land (1)}{N} \tag{1}$$

ユニポーラ表現では範囲 [0,1]の数値を表現するこ とが可能であり、数値の刻みは 1/N である。例とし て、SNA: $(1\ 1\ 0\ 0)$ を考える。4 ビットのうち 2 ビッ トが '1' であるから、A がユニポーラ表現で表す数 値 \hat{a} は $\hat{a} = 2/4$ である。

前述のとおり,ユニポーラ表現で表現可能な数値 の範囲は [0,1] であり,負の値を表現することができ ない.負の値を扱えるように,表現可能な数値の範 囲を拡張した表現法がバイポーラ表現である. SN*X* がバイポーラ表現によって表す数値 \hat{x}' は,式(1)の \hat{x} を用いて以下のように定められる.

$$\hat{x}' = 2\hat{x} - 1 \tag{2}$$

バイポーラ表現では、範囲 [-1,1]の数値を表現可能 である.また、バイポーラ表現された N ビット SN の数値の刻みは 2/N である.ユニポーラ表現の場合 と同様に、例として SNA: $(1\ 1\ 0\ 0)$ について考え る. $\hat{a} = 2/4$ であり、バイポーラ表現の場合には、A が表す数値 \hat{a}' は $\hat{a}' = 2\hat{a} - 1 = 0$ である.ディジタ ルフィルタにおいては、負の値を扱う必要があるた め、本稿ではバイポーラ表現を用いる.

Fig. 1 乱数発生器と比較器を用いた SN の生成

2.2 2進表現からストカスティック表現への変換

2 進数から SN への変換には、Fig.1 に示すように、 乱数発生器(Random Number Generator)と比較 器(Comparator)からなる SNG(Stochastic Number Generator)を用いる.ここで用いる乱数発生器 は、範囲 [0,1] の一様分布の乱数を発生させる.乱 数発生器には、線形フィードバックシフトレジスタ (LFSR: Linear Feedback Shift Register)が多く用 いられる.はじめに、ユニポーラ表現への変換につ いて説明する.ユニポーラ表現では、与えられた2 進数 x に対して、SNX の i 番目のビット X_i を以下 の確率 $P(X_i = 1)$ にしたがって発生させる.

$$P(X_i = 1) = x \tag{3}$$

これは, Fig.1 に示した回路を用いて次のように実 現できる. 一様乱数 r と,変換したい 2 進数 x を比 較器に入力する. x の範囲は [0,1] とする. 比較器の 出力は以下のように定める.

- x > r のとき、1を出力
- x ≤ r のとき,0を出力

この処理をN回繰り返すことで, 語長NのSNが得られる.

一方,バイポーラ表現では、与えられた2進数xに対して以下の確率 $P'(X_i = 1)$ にしたがって X_i を発生させる.

$$P'(X_i = 1) = \frac{1}{2}(x+1) \tag{4}$$

バイポーラ表現に変換する場合は、xの範囲は[-1,1]である.そのため、x & r & c 同じ [0,1]の範囲にスケーリングしたもの、すなわち

$$x' = \frac{1}{2}(x+1)$$
(5)

によって得られる x'と一様乱数 r との比較をする.

このように、2 進数から SN への変換には乱数を 用いるため、変換結果が一意に定まらず、変換前と 変換後で表される数値が変化してしまう可能性があ る. すなわち、変換前の2進数xと、xを変換して 得た SNX が表す数値 \hat{x} が、 $\hat{x} \neq x$ となる場合が存 在する.

2.3 ストカスティック表現から2進表現へ の変換

SN から 2 進数への変換には,カウンタ回路が用 いられる.カウンタ回路によって SNX 内のビット '1'の数をかぞえ,式(1)と式(2)から数値を求める. 2 進数から SN への変換と異なり,ある SNX から得 られる値は一意に定まる.

2.4 乗算

次に, SN 同士の乗算について述べる. 乗算を実 現する方法はユニポーラ表現とバイポーラ表現とで 異なる. ここでは, ユニポーラ表現の場合について 述べる.

SN 同士の乗算は, 2つのビット列におけるビット '1'の同時生起確率を求めることで実現できる. そこ で,ユニポーラ表現された SN 同士の乗算は, 2つの SN が互いに無相関であることを前提として,ビット 列同士の論理積をとることで求める. 互いに無相関 である SNA と B の論理積を C とすると,以下の式 が成り立つ.

$$P(C_i = 1) = P(A_i = 1)P(B_i = 1)$$
(6)

式(3)と(6)より、以下の式が成り立つ.

$$c = a \times b \tag{7}$$

式 (7) より, SN 同士の論理積をとることで乗算が実 現できることがわかる.例えば,ユニポーラ表現さ れた 2 つの SN, $A:(1100) \ge B:(0110)$ の乗算 を考える.これを図示したものが Fig.2 である.そ れぞれが表す数値 \hat{a}, \hat{b} は $\hat{a} = \hat{b} = 1/2$ であるから, 積 $\hat{a} \times \hat{b}$ は 1/4 である. $A \ge B$ の論理積を $C \ge t$ ると,C:(0100) である.C が表現する数値 \hat{c} は

Fig. 2 ユニポーラ表現における乗算の例

Fig. 3 バイポーラ表現における乗算の例

 $\hat{c} = 1/4$ であり、 $\hat{c} = \hat{a} \times \hat{b}$ を満たしていることがわかる.

一方で、バイポーラ表現された SN 同士の乗算は、 排他的論理和の否定をとることで計算される. この 処理は、回路上で XNOR ゲートによって実現される. 例えば、バイポーラ表現された 2 つの SNA: (1100) と B: (0110) の乗算を考える. これを図示したも のが Fig.3 である. A と B それぞれがバイポーラ表 現で表す数値 \hat{a}' 、 \hat{b}' は $\hat{a}' = \hat{b}' = 0$ であるから、積 $\hat{a}' \times \hat{b}'$ は0 である. A と B の排他的論理和の否定を C とすると、C: (0101) である. C が表現する数 値 \hat{c} は $\hat{c} = 0$ であり、 $\hat{c} = \hat{a}' \times \hat{b}'$ を満たしている.

このように、SCでは、乗算を単一の論理ゲート のみで行うことができる.そのため、従来の2進数 演算に比べて回路における乗算器の面積を大幅に削 減することができる.

2.5 加算

本節では、SN の加算について述べる. SN は確率 によって数値を表しているため、絶対値が1を超え る数値を表すことができない. そのため、数値 *a* と *b* の和 *c* は、

$$c = \frac{1}{2}(a+b) \tag{8}$$

のように結果の絶対値が1を超えないようにスケー リングされる必要がある.このような SN 同士の加 算は,ユニポーラ表現とバイポーラ表現のどちらの 場合においてもマルチプレクサによって実現できる. マルチプレクサの入力を A, B, 出力を C, 制御信 号を S とする. それぞれの i 番目のビットにおける '1' の存在確率を $P(A_i = 1)$, $P(B_i = 1)$, $P(C_i = 1)$, $P(S_i = 1)$ とする. マルチプレクサの出力信号の i番目のビットにおける '1' の存在確率 $P(C_i = 1)$ は 以下のように書くことができる.

$$P(C_i = 1) = P(S_i = 1)P(A_i = 1)$$

+ $(1 - P(S_i = 1))P(B_i = 1)$ (9)

一般に、2 つの SN の加算においては、 $P(S_i = 1) = 1/2$ となるような制御信号 S を用いる.このとき、式 (9) は以下のようになる.

$$P(C_i = 1) = \frac{1}{2}(P(A_i = 1) + P(B_i = 1)) \quad (10)$$

式 (10) と,式(3) もしくは式(4) より,マルチプレク サを用いることによって式(8) に示した加算ができ ることがわかる.式(10) からもわかるように,マル チプレクサを用いた加算では,加算結果の絶対値が 1 を超えないようにスケーリングされて出力される 点に注意が必要である.そのため,SNを2進数に変 換したあと,スケーリングの補正が必要となる.式 (10) に示した処理では,加算結果を1/2倍にスケー リングしたものを出力している.和を元のスケール で得るためには,出力を2進数に変換したのち,2 倍する必要がある.また, $P(S_i = 1) \neq 1/2$ である とき,マルチプレクサを用いた加算は重み付き加算 となる.

マルチプレクサの制御信号 S は, $P(S_i = 1)$ の確 率でビット '1' が出現するビット列である. この信 号の生成には,ユニポーラ表現における 2 進数から SN への変換器を用いる.

マルチプレクサを用いたユニポーラ表現による SN 同士の加算の例を Fig.4 に示す.入力は A: (1100), B: (0110),制御信号は S: (1010)である. $\hat{a} = \hat{b} = 2/4$ であるから, $\hat{a} + \hat{b} = 1$ である.一方, $\hat{c} = 2/4$ であるから, $\hat{c} = \frac{1}{2}(\hat{a} + \hat{b})$ を満たしている. マルチプレクサを用いて正しく SN の加算が実現で きていることがわかる.

Fig. 4 マルチプレクサを用いた加算の例

Fig. 5 SC に基づくディジタルフィルタの例

3. 内部雑音の発生と伝搬

3.1内部雑音の原因

入出力を2進数とし、演算をSCで行うディジタ ルフィルタの例をFig.5に示す.SCに基づくディジ タルフィルタにおける内部雑音の原因としては、以 下の三つが考えられる.

- SNG における入力の分散
- 演算における確率的変動
- 加算のスケーリング補正における誤差の拡大

これらの雑音をモデル化したブロック図を Fig.6 に 示す. SNG は確率的プロセスを伴うため,生成され た SN は確率的変動を持つ.そしてフィルタの乗算, 加算の過程でさらに確率的に変動する.これらの確 率的変動が,内部雑音としてフィルタ出力に生じる. 最後に,加算によるスケーリングを補正するために 数値を定数倍する必要がある.ここで内部雑音が拡 大される.

フィルタの内部雑音を解析するためには, SNG で 生じる分散と, 演算素子での分散の伝搬について考え る必要がある.以降では, この点について考察する.

3.2 分散伝達関数

分散伝達関数⁷⁾を用いることで、入力シーケンス の、各演算素子における分散の伝搬を計算によって 求めることができる.各演算素子の分散伝達関数は

Fig. 6 SC に基づくディジタルフィルタで生じる雑音のモデル

以下の通りである.ここで、NはSNの語長,a,bは2つの入力,sはマルチプレクサの選択信号, E'_a は $(1-E_a)$ を表す.Eはビットストリーム内の正規化されたビット'1'の数の期待値, σ^2 は正規化されたビット'1'の数の分散である.

AND

$$E_A(a,b) = E_a E_b$$
(11)

$$\sigma_A^2(a,b) = \frac{1}{N-1} (E_a - \sigma_a^2 - E_a^2) (E_b - \sigma_b^2 - E_b^2)
+ \sigma_a^2 E_b^2 + \sigma_b^2 E_a^2 + \sigma_a^2 \sigma_b^2$$
(12)

OR

$$E_O(a,b) = E_a + E_b - E_a E_b$$
(13)

$$\sigma_O^2(a,b) = \frac{1}{N-1} (E'_a - \sigma_a^2 - E'_a^2) (E'_b - \sigma_b^2 - E'_b^2)
+ \sigma_a^2 E'_b^2 + \sigma_b^2 E'_a^2 + \sigma_a^2 \sigma_b^2$$
(14)

XNOR

$$E_X(a,b) = E_a E_b + E'_a E'_b$$
(15)

$$\sigma^2_X(a,b) = \sigma^2_A(a,b) + \sigma^2_A(a',b')$$

$$+2\{(E_a - \sigma_a^2 - E_a^2)(E_b - \sigma_b^2 - E_b^2) - E_a E_b E_a' E_b'\}$$
(16)

 \mathbf{MUX}

$$E_M(a,b,s) = E_a E_s + E_b E'_s \tag{17}$$

$$\sigma_M^2(a, b, s) = \sigma_A^2(a, s) + \sigma_A^2(b, s')$$
$$-2E_a E_b \sigma_s^2 \qquad (18)$$

Table 1 実験条件		
入力信号	範囲 [-1,1],刻み 0.05	
信号長	10^{4}	
SN の語長	2^{12}	

4. 単一演算回路の出力の分散

SNG,XNOR による乗算, MUX による加算につ いて, それぞれの回路における出力の分散をビット レベルのシミュレーションによって測定し,分散伝 達関数による分散の理論値と比較した.

SNGの出力は二項分布に従う. よって,入力をxと すると SNG 出力の期待値 $E_{\text{SNG}}(x)$ と分散 $\sigma_{\text{SNG}}^2(x)$ は以下のようになる.

$$E_{\rm SNG}(x) = \frac{1}{2}(x+1)$$
 (19)

$$\sigma_{\rm SNG}^2(x) = \frac{1}{4}(x+1)(1-x) \tag{20}$$

入力する値と出力の分散の関係を調べるため,入 力値を [-1,1] の範囲で変化させて測定した.入出力 は 64bit 浮動小数点数である.シミュレーションに は MATLAB を使用した.その他の条件は表1に示 す.加算と乗算の分散は,SNG の分散も含んでいる ことに注意が必要である.

結果を Fig.7-11 に示す.いずれの結果も,扱う 数値が0に近いほど分散が大きくなることを示して いる.

Fig. 7 SNG の分散

Table 2 実験条件		
入力信号	範囲 [-1,1] の一様乱数から	
	取り出した標本系列	
信号長	1000	
SN 語長	2^{12}	
フィルタ係数	範囲 [-1,1], 刻み 0.1	
試行回数	1000	

5. FIR フィルタの出力の分散

5.1 フィルタ係数と出力の分散

SCに基づく FIR フィルタにおけるフィルタ係数 と出力の分散の関係を調べるため、係数を変化させ ながらフィルタ出力の分散をビットレベルのシミュ レーションで測定し、分散伝達関数と比較した.一 様乱数から取り出した標本系列を複数回入力し、各 時刻における出力の分散を求めた.分散の時間平均 を各係数における分散とした.実験条件を表2に示 した.結果を Fig.12,13 に示した.係数が0に近い ほど出力の分散が大きくなることがわかる.これは、 SNG における分散が伝搬し出力に影響しているから だと考えられる.

5.2 タップ数・語長と出力の分散

SCに基づく FIR フィルタにおけるフィルタのタッ プ数および SN の語長と出力の分散の関係を調べる ため、タップ数と語長を変化させながらフィルタ出 力の分散を測定し、分散伝達関数と比較した.分散 の求め方は前章と同様である.実験条件を表3に示

Fig. 9 XNOR の分散の理論値

した. 結果を Fig.14,15 に示した. 実験結果は以下 のことを示している.

- 出力の分散はタップ数の2乗に比例する.
- 出力の分散は SN の語長に反比例する.

5.3 2タップフィルタの出力の分散

FIR フィルタの出力の分散を求めるためには、フィ ルタのブロック図に従って、入力側から順に分散伝 達関数を計算していけばよい.最初に求めるのは、 SNG における平均と分散である.SNG の出力は二 項分布に従う.二項分布 B(N,p)の平均 μ と分散 σ^2 は、 $\mu = Np$ 、 $\sigma^2 = Np(1-p)$ である.Nは試行回数、 pは成功確率である.SNG においては、N は SN の 語長、pはビット1の生成確率に相当する.バイポー ラ表現の場合、入力実数xに対して、ビット1の生成 確率は $\frac{x+1}{2}$ である.すなわち、SNG 出力の、正規化

Fig. 11 MUX の分散の理論値

されたビット1の数の平均 $E_{SNG}(x)$ と分散 $\sigma_{SNG}^2(x)$ は、 $E_{SNG}(x) = \frac{x+1}{2}$ 、 $\sigma_{SNG}^2(x) = \frac{(x+1)(1-x)}{4}$ である。入力実数の値に応じて、変換後のSNの分散が変化することがわかる。ある時刻の入力x(n)に対するSNG 出力X(n)の期待値と分散は以下のようになる。ここでx(n)は範囲[-1,1]の一様乱数とする。

$$E_{X(n)} = \frac{x(n) + 1}{2} \tag{21}$$

$$\sigma_{X(n)}^2 = \frac{(x(n)+1)(1-x(n))}{4}$$
(22)

ここでいう期待値は、同一入力下において、ある特定の時刻の多数の測定値から求めた、集合平均である.また、この期待値と分散は、ビット長で正規化された、ビット列内のビット1の数の期待値と分散を表す.前述の通り、SCでは、SNGにより値が変動し、その変動のパラメータは変換前の値によって決定されることから、このような表現を用いる.次に、入力x(n)とフィルタ係数 h_0 をそれぞれ SN ~変換し、乗算したもの $X(n)H_0$ の期待値と分散を求

Fig. 12 フィルタ出力の分散の実測値

Fig. 13 フィルタ出力の分散の理論値

める. この処理は XNOR ゲートにより実装される ので, XNOR ゲートの分散伝達関数より以下の式が 得られる.

$$E_{H_0X(n)} = E_{X(n)}E_{H_0} + (1 - E_{X(n)})(1 - E_{H_0})$$
$$= \frac{h_0x(n) + 1}{2}$$
(23)

$$\sigma_{H_0X(n)}^2 = \frac{1}{N-1} \quad \{(1 - E_{X(n)}) - \sigma_{X(n)}^2 - (1 - E_{X(n)}^2)\} \\ \times \{(1 - E_{H_0}) - \sigma_{H_0}^2 - (1 - E_{H_0}^2)\} \\ + \sigma_{X(n)}^2 (1 - E_{H_0})^2 + \sigma_{H_0}^2 (1 - E_{X(n)}^2) \\ + \sigma_{X(n)}^2 \sigma_{H_0}^2 \\ = \frac{1 - h_0^2 x(n)^2}{4}$$
(24)

同様に,x(n)の1時刻遅延x(n-1)と係数 h_1 の 積については以下のようになる.

$$E_{H_1X(n-1)} = \frac{h_1x(n-1) + 1}{2} \tag{25}$$

-7 -

Table 3 実験条件			
入力信号	範囲 [-1,1] の一様乱数から		
	取り出した標本系列		
信号長	250		
SN 語長	$[2^1, 2^{12}]$		
フィルタタップ数 N	$[2^1, 2^8]$		
フィルタ係数	遮断周波数 $\omega_c = 0.5\pi$		
	$h(n) = \frac{\omega_c}{\pi} \operatorname{sinc} \frac{\omega_c}{\pi} n \times \omega(n)$		
	$n = -\frac{N-1}{2} \frac{N-1}{2}$		
	$\omega(n) = 0.54 + 0.46 \cos \frac{2\pi n}{N-1}$		
	低域通過フィルタ		
試行回数	200		

$$\sigma_{H_1X(n-1)}^2 = \frac{1 - h_1^2 x(n-1)^2}{4}$$
(26)

 $h_0 x(n) + h_1 x(n-1)$ を表現する $H_0 X(n) + H_1 X(n-1)$ を実現するマルチプレクサ出力 Y の 期待値と分散を考える.マルチプレクサの制御信号 S は確率 1/2 でビット1 が出現する系列と仮定する. このとき

$$E_S = 1/2 \tag{27}$$

$$\sigma_S^2 = 1/4 \tag{28}$$

である. Y の期待値と分散は、分散伝達関数から以下のように求めることができる..

$$E_Y = E_{H_0X(n)}E_S + E_{H_1X(n-1)}(1 - E_S)$$

= $\frac{h_0x(n) + h_1x(n-1) + 2}{4}$ (29)

$$\sigma_Y^2$$

$$= \frac{1}{N-1} \quad (E_{H_0X(n)} - \sigma_{H_0X(n)}^2 - E_{H_0X(n)}^2) \\ \times (E_S - \sigma_S^2 - E_S^2) + \sigma_{H_0X(n)}^2 E_S^2 \\ + \sigma_S^2 E_{H_0X(n)}^2 + \sigma_{H_0X(n)}^2 \sigma_S^2 \\ + \frac{1}{N-1} \quad (E_{H_1X(n-1)} - \sigma_{H_1X(n-1)}^2 - E_{H_1X(n-1)}^2) \\ \times ((1 - E_S) - \sigma_S^2 - (1 - E_S)^2) \\ + \sigma_{H_1X(n-1)}^2 (1 - E_S)^2 \\ + \sigma_S^2 E_{H_1X(n-1)}^2 + \sigma_{H_1X(n-1)}^2 \sigma_S^2 \\ - 2E_{H_0X(n)} E_{H_1X(n-1)} \sigma_S^2$$
(30)

Fig. 15 フィルタ出力の分散の理論値

ここで,

$$E_{H_0X(n)} - \sigma_{H_0X(n)}^2 - E_{H_0X(n)}^2 = 0 \quad (31)$$

$$E_S - \sigma_S^2 - E_S^2 = 0 (32)$$

$$\sigma_{H_0X(n)}^2 E_S^2 + \sigma_S^2 E_{H_0X(n)} + \sigma_{H_0X(n)}^2 \sigma_S^2$$

$$= \frac{1}{16} (1 - h_0^2 x(n)^2) + \frac{1}{16} (h_0 x(n) + 1)^2$$

$$+ \frac{1}{16} (1 - h_0^2 x(n)^2)$$

$$= -\frac{1}{16} h_0^2 x(n)^2 + \frac{1}{8} h_0 x(n) + \frac{3}{16}$$
(33)

同様に,

$$E_{H_1X(n-1)} - \sigma_{H_1X(n-1)}^2 - E_{H_1X(n-1)}^2 = 0 \quad (34)$$
$$(1 - E_S) - \sigma_S^2 - (1 - E_S)^2 = 0 \quad (35)$$

$$\sigma_{H_1X(n-1)}^2 E_S^2 + \sigma_S^2 E_{H_1X(n-1)} + \sigma_{H_1X(n-1)}^2 \sigma_S^2$$

= $\frac{1}{16} (1 - h_1^2 x(n-1)^2) + \frac{1}{16} (h_1 x(n-1) + 1)^2$

$$+\frac{1}{16}(1-h_1^2x(n-1)^2) = -\frac{1}{16}h_1^2x(n-1)^2 + \frac{1}{8}h_1x(n-1) + \frac{3}{16} \quad (36)$$

また,

$$-2E_{H_0X(n)}E_{H_1X(n-1)}\sigma_S^2$$

$$= -2 \times \frac{1}{2}(h_0x(n)+1) \times \frac{1}{2}(h_1x(n-1)+1) \times \frac{1}{4}$$

$$= -\frac{1}{8}(h_0x(n)+1)(h_1x(n-1)+1)$$
(37)

以上より,

$$\sigma_Y^2 = -\frac{1}{16}h_0^2 x(n)^2 + \frac{1}{8}h_0 x(n) + \frac{3}{16} \\ -\frac{1}{16}h_1^2 x(n-1)^2 + \frac{1}{8}h_1 x(n-1) + \frac{3}{16} \\ -\frac{1}{8}(h_0 x(n) + 1)(h_1 x(n-1) + 1) \\ = \frac{4 - (h_0 x(n) + h_1 x(n-1))^2}{16}$$
(38)

入力 x(n) の時間平均をとる.

$$\sigma_Y^2 = \frac{1}{4} - \frac{1}{16} \{h_0^2 E[x(n)^2] + 2h_0 h_1 E[x(n)] E[x(n-1)] + h_1^2 E[x(n-1)^2] \}$$
(39)

ここで, E[x(n)] = E[x(n-1)] = 0, $E[x(n)^2] = E[x(n-1)^2] = V[x(n)] = \frac{1}{3} より$,

$$\sigma_Y^2 = \frac{1}{4} - \frac{1}{16} \left(\frac{1}{3} h_0^2 + \frac{1}{3} h_1^2 \right)$$
$$= \frac{1}{4} - \frac{1}{48} (h_0^2 + h_1^2)$$
(40)

となる. 式 40 に加算のスケーリング補正をかけて求 めた分散の理論値 (σ_y^2) を Fig.16 に示す. このグラ フは Fig.12 と Fig.13 に概ね一致しており,分散伝達 関数のから FIR フィルタの出力に生じる分散が記述 できたことが示された. 一方で,グラフの端の領域 ((h_0, h_1) = (-1, -1) など) においてシミュレーショ ン結果と誤差が生じている. これについては,今後 の検討が必要である.

5.4 タップ数・語長と分散の関係

次に、フィルタ出力部における S2B 変換直前の SN を Y, X 内のビット1の数を N₁(Y), X の語長

Fig. 16 式の解析によって求めたフィルタ出力の 分散の理論値

を N_L , フィルタのタップ数を T, スケーリング補 正後の出力を y のとする. S2B 変換とスケーリング は以下の式で表すことができる.

$$x = \left(2 \times \frac{N_1(Y)}{N_L} - 1\right) \times T \tag{41}$$

これは確率変数 $N_1(Y)$ から y への変換であるから, yの期待値と $N_1(Y)$ の期待値の関係は以下のように なる.

$$E_y = \frac{2T}{N_L} E_{N_1(Y)} - T$$
 (42)

また,yの分散と $N_1(Y)$ の分散の関係は以下のようになる.

$$\sigma_y^2 = \left(\frac{2T}{N_L}\right)^2 \sigma_{N_1(Y)}^2 \tag{43}$$

ここで、 $\sigma_{N_1(Y)}^2$ を、分散伝達関数の定義に則った分 散 σ_Y^2 に置き換える(N_w で正規化する)と、

$$\sigma_y^2 = \frac{4T^2}{N_w} \sigma_Y^2 \tag{44}$$

となる.この式は、出力の分散がフィルタのタップ 数の二乗に比例し、語長に反比例することを示して いる.

6. まとめと今後の課題

本稿では、ストカスティック演算によって実現さ れた FIR フィルタの内部で発生する雑音について検 討した.分散伝達関数を用いることで、2 タップ FIR フィルタで発生する雑音を解析し、式で記述できる ことを示した. 今後は、さらに係数の多い場合につ いて、出力の分散 (式 40 の σ_Y^2)の式を導出したいと 考えている.

参考文献

- B.R. Gaines, "Stochastic computing systems," Advances in Information systems Science, vol.2, pp.37–172, 1969.
- A. Alaghi and J.P. Hayes, "Survey of stochastic computing," ACM Trans. Embedd. Comput. Sys., vol.12, no.92, pp.1–19, 2013.
- B.D. Brown and H.C. Card, "Stochastic neural computation i: Computational elements," IEEE Trans. Comput., vol.50, no.9, pp.891– 905, 2001.
- H. Chen and J. Han, "Stochastic computational models for accurate reliability evaluation of logic circuits," Proc. GLSVLSI, pp.61–66, 2010.
- Y. Liu and K.K. Parhi, "Architectures for recursive digital filters using stochastic computing," IEEE Trans. Signal Process., vol.64, no.14, pp.3705–3718, 2016.
- 6) H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, "Compact and accurate digital filters based on stochastic computing," IEEE Trans. Emerging Topics in Comp., pp.1–12, 2016.
- C. Ma, S. Zhong, and H. Dang, "Understanding variance propagation in stochastic computing systems," Proc. ICCD, pp.213–218, 2012.