計測自動制御学会東北支部 第316回研究集会(2018.6.22)

資料番号 316-10

新生児における大動脈縮窄症に対する手術適用指標の

流体力学的評価について

Evaluation of index on surgical adaptation for CoA in infants

○菅原智哉,森大祐

○Tomoya Sugawara, Daisuke Mori

八戸高専

Hachinohe National College of Technology

キーワード: 大動脈縮窄, CFD, 血流, 壁せん断応力, 先天性心疾患

連絡先:〒039-1192 八戸市田面木字上野平16-1 八戸高専 機械システムデザインコース

Tel.: 0178-27-7266 Email: mori-m@hachinohe-ct.ac.jp

1.緒言

1-1. 大動脈縮窄

大動脈縮窄症とは下行大動脈の一部が局 所的に収縮し、血流の通り道が狭くなる先天 性心疾患である。大動脈縮窄症には他に合併 症がある大動脈縮窄複合と他に合併症がな い単純型大動脈縮窄の2種類があり、大動脈 縮窄複合の場合、合併症は心室中隔欠損が最 も多く、単純型に比べて狭窄の度合いが強い。 症状は単純型か複合かで症状、経過が異なり、 複合の場合の方が重症である。実際の症状は 息が速い、脈が速い、ミルクの飲みが悪い、 寝汗等がある。複合型で心室中隔欠損がある と肺動脈の血流が多く肺高血圧となる。

一方で単純型大動脈縮窄の場合は小児期 を無症状で経過することも多く、大動脈縮窄 症の特徴として上半身が高血圧、下半身が低 血圧になるという特徴があるため、高血圧を 指摘され病院の診断で見つかる事がある。先 天性心疾患は新生児約 100 人に1 人が持つと 言われ、その内の約 6~8%が大動脈縮窄症で ある¹⁾。

無治療で成人に達した場合、心不全、脳出 血、大動脈破裂などが直接死因となることが 多く、平均寿命は34歳と報告されている²⁾。 4~5歳までに手術をしない場合高血圧が残 存する場合があるため早期の治療が良いと される。

手術の適用は狭窄部での圧較差より判断 される。一般的には狭窄部での圧較差が 30 mmhg 以上の場合に手術が必要とされる。し かし、圧較差 25 mmhg での手術の適用や 40 mmhg まで手術が必要ないとされる報告²⁾も ある。

本研究では、大動脈縮窄が寿命に大きな影響を与え、手術適用の基準値以下での手術適 用や、現在の基準値よりも大きな値で手術が 必要とされるべきであるという報告³⁾もある 事から、現在の手術適用の指標を再評価する ため、計算流体学的手法を用いた大動脈縮窄 を有する大動脈モデル内の血流解析を実施 し、圧較差の計算に用いられる流速と血管壁 の壁せん断応力を計測することで手術適用 指標の評価を行った。

1-2. 大動脈弓

大動脈縮窄ができる部位である大動脈弓 は心臓から出た動脈が上半身と下半身に分 岐する部位の事を指し、血管が弓状に曲がっ ており、上行大動脈から下行大動脈にかけて 腕頭動脈、左総頸動脈、左鎖骨下動脈の3つ の分岐があるのが特徴である。各部位の名称 を Fig. 1 に示す。左鎖骨下動脈との分岐部の すぐ末梢側では大動脈弓は細くなり、大動脈 峡部と呼ばれる(Fig. 2)。この部分の先天的な 強い狭窄を大動脈縮窄と呼び、下半身への血 行動態が不全となる。また、新生児の場合は 左鎖骨下動脈の分岐後に動脈管と呼ばれる 血管がある。この動脈管は肺動脈と大動脈を 繋ぐ血管であり、胎児期に活動を行わない肺 へ送られる血液を大動脈に流す役割がある。 そのため、約生後2日で退縮し、ほとんど血 液は流れなくなり、生後数週間で完璧に閉じ てしまう。この動脈管が退縮する時、大動脈 峡部も一緒に縮んでしまう事が大動脈縮窄 症の原因の1つとなっている。大動脈縮窄症 発症の原因には他に胎児期から左心室に関 わる弁が細く、大動脈の血流が少ないことと 動脈管と一緒に下行大動脈が縮んでしまう ことの2つがある³⁾。

Fig. 1 Aortic arch

Fig. 2 Isthmus of aorta

2.方法

2-1. 使用ソフト

本研究では血流の解析をするために連続 の式、運動方程式、圧力方程式等を解く必要 があり、それらを有限体積法で解ける解析ソ フト OpenFOAM(OpenCFD 社, UK)のアプリ ケーション icoFoam を使用し解析を行う。解 析で使用するモデルはモデリング(形状作成) とメッシング機能をもつソフトである Salome を用いて形状を作成した後、四面体 メッシュで要素分割した。また、本研究では 可視化ソフト ParaView を用いて解析結果の 可視化を行う。

2-2. 解析モデル作成

本研究では、左総頸動脈分岐後から下行大 動脈を約 100 mm の長さまでで切ったモデル を作成した。大動脈各部の寸法は文献⁴⁾を参 考にし設定した。設定した健常者の主要寸法 を Table 1 に示す。

Table 1Aortic dimensions of healthy subject

上行大動脈血管径	11mm
下行大動脈上部管直径	9.5mm
下行大動脈上部管長さ	20mm
下行大動脈下部血管径	11mm
左鎖骨下動脈血管径	6mm

解析モデルは健常者の大動脈モデルの他 に大動脈縮窄症患者のモデルとして下行大 動脈上部の血管径 d を 9 mm から 1 mm 刻み で細くしたモデル(d_{min} = 4 mm)を作成した。 Fig. 3 に作成したモデルを示す。また、血管 形状の違いが及ぼす影響を調べるため狭窄 部を内側と外側に 1 mm 偏らせた d = 5 mm の モデルを作成した。Fig. 4 に作成したモデル を示す。それぞれ A が偏りのないモデル、B が内側に偏りのあるモデル、C が外側に偏り があるモデルである。血管は実際の滑らかな 血管形状に近づけるため分岐部、狭窄部にフ ィレットを付けている。湾曲部やフィレット 部等の詳細な寸法は Fig. 5 に示す。作成した モデルは Salome を用いて約 65000 個の四面 体に分割を行う。要素分割の状態を Fig. 6 に 示す。

Fig. 3 Simulated CoA models with different diameters

Fig. 4 Simulation models with eccentric narrow section

Fig. 5 Model dimension

Fig. 6 Decomposed model

2-3. 流体解析

流体解析には、Linux 上で動作する有限体 積法による流体解析ソフト OpenFOAM2.3 (OpenCFD 社、UK)のユーティリティ icoFoam を用いて、非圧縮性ニュートン流体に対する ナビエーストークスの方程式

$$\frac{Du}{Dt} = -\frac{1}{\rho}\nabla p + v\nabla^2 u \qquad (1)$$

および、連続の式

$$\nabla \cdot u = 0 \tag{2}$$

を解くことによって行った。血液の動粘度 v を $3.5 \times 10^{-6} \text{ m}^2/\text{s}$ 、密度 ρ を 1.06×10^3 kg/m³ と仮定した。

2-4. 解析条件

本研究での解析条件を以下に記す。流速 等は文献 ⁵を参考に設定した。

: 0.42 [m/s]
: 3.5×10 ⁻⁶ [m/s ²]
女: 1320(層流)
:約 65000
: 速度勾配ゼロ
: 剛体、滑りなし条件
攵

出口での圧力は健常者の大動脈モデルで 下行大動脈から 64.5% 流出となるように規定 した。

作動流体は非圧縮性ニュートン流体を仮 定し、定常一様流入条件での解析となってい る。

3.結果

3-1. 流速分布

健常者の大動脈モデルと *d* = 5~9 mm での 流速分布を Fig. 7 に示す。値の計測は最も血 管モデルの細くなる Y 軸 92mm で流速を取 り、グラフの横軸は血管の中心軸を 0、内側 壁-100 外側壁 100 としたものである(Fig. 8)。

グラフ形状は台形状になっており流速の ピークがやや外側壁寄りにあるのが分かる。

Fig. 7 Flow velocity distribution

Fig. 8 Measuring part

3-2. 壁せん断応力分布

d = 5,6,7 mm大動脈モデルでの内側壁・外 側壁での壁せん断応力分布のグラフをそれ ぞれ Fig. 9,Fig. 10 に示す。グラフ形状はd =5,6,mm モデルでは速度勾配の増減は小さく 横ばいなグラフになった。d = 7 mmのモデル では Y 座標約 92 mm と 94 mm で壁せん断応 力が大きくなり、二つの山ができている。こ の結果から、速度勾配は血管が細くなった直 後と血管が広がろうとしている部位で大き くなる事が分かる。

Fig. 9 Wall shear stress distribution(outside wall)

Fig. 10 Wall shear stress distribution(inside wall)

3-3. 最大流速 Umax 速度勾配 Wmax

流速と速度勾配の関係を調べるために狭 窄部血管径 d に対する最大流速 U_{max} と最大壁 せん断応力 W_{max}のグラフを作成した。グラフ をそれぞれ Fig. 11,Fig. 12 に示す。どちらも同 じような形状になり、d が小さくなるにつれ 指数関数的に増加している。

Fig. 11 Change in Flow velocity

Fig. 12 Change in Wall shear stress

3-4. 形状に偏りを有するモデル

形状に偏りを有するモデルの違いを調べ るため d = 5 mm の血管が内側と外側に偏っ ているモデルでの解析を行った。解析を行っ たモデルは Fig. 4 に示した通りである。内側 壁、外側壁の壁せん断応力分布のグラフを Fig. 13,Fig. 14 に示す。モデル A、B、C での 最大壁せん断応力を $W_{A max}$, $W_{B max}$, $W_{C max}$ とす ると内側壁では $W_{B max} > W_{A max} > W_{C max}$ 外側壁 で $W_{C max} > W_{A max} > W_{B max}$ だった。この結果か ら、血管形状に偏りによって血管壁にかかる 力は変化していることが分かる。

Fig. 14 Wall shear stress distribution of simulation models with eccentric narrow section(inside wall)

4. 考察

流速・壁せん断応力は血管径が細くな るにつれ増加し、増加の様子は指数関 数的である事が分かった。血管形状の 違うモデルでの解析では壁せん断応 力が変化した。粥状動脈硬化が高壁せ ん断応力で生じると仮定した場合、大 動脈縮窄症によって生じた高壁せん 断応力で粥状動脈硬化を発症し、血管 がさらに細くなるため、血管壁面にか かる力は大きく増加し、合併症のリス クが上がると考えられる。しかし、血 管形状の違いによって血管にかかる 力は変化し、現在の手術適用の指標で ある圧較差は流速で導いているため 評価が不十分な可能性があると考え られる。

5. 結言

本研究では計算流体力学的手法を用いて、 大動脈縮窄を有する大動脈モデル内の血流 解析を実施し、血管壁の壁せん断応力から手 術適用指標の評価を行った。その結果以下の 知見を得た。

(1) 軽度の狭窄であった場合でも動脈硬化等

で血管が細くなった場合、Fig. 12 より壁せん 断応力が指数関数的に上がるため血管壁に かかる力は大きく上がる。

(2) 大動脈の血管壁にかかる力の大きさは Fig. 13,Fig. 14 より血管の形状によって変化 する事が分かった。現在の手術適用指標であ る圧較差の測定では評価が不十分である可 能性がある。

(3) 今回の研究では左総頸動脈の分岐後から のモデルでの解析を行ったが、3 つの分岐が ある大動脈弓全体での解析を進める必要が ある。

謝辞

本研究の一部は JSPS 科研費 JP16k10116 の 助成を受けたものです。

参考文献

 大動脈縮窄症 19. 小児科 心血管系の先 天異常 MSD マニュアル

 金澤英明「15歳まで無症状に経過し、学校 検診を契機に発見された単純型大動脈縮窄 症の1例」,心臓 Vol.35 No.6,2003,419~422
 門間和夫,大動脈縮窄の成因,日本小児循 環器学会雑誌 Vol.14 No.1,1998,63~65
 Patricia Garcia-Canadilla etal,A Computational Model of the Fetal Circulation to Quantify Blood Redistribution in Intrauterine Growth Restriction, PLoS Computational 10(6) 2014, 1~14
 前田信治「血液のレオロジーと生理機能」 日生誌 Vol. 66,No. 7,2004,8
 山口隆美 脈管系の流体力学-粥状 動脈硬 化症 の局在からみた血管内血流と血管壁に おける輸送現象-日本機械 学会論文集 (B 編). Vol.73,No728,2007,4 7)山崎琢磨ら,遺残大動脈縮窄症に対する全
弓部置換と胸部下行大動脈バイパス術の1
例,日血外会誌 Vol.21,No.6,2012,737~740