計測自動制御学会東北支部 第 316 回研究会(2018.6.22) 講演番号 316-12

ハイパーサーミア治療時における温度計測を目的とした

治療支援ロボットアームの開発

○井関 祐也,中野渡 功汰○Yuya Iseki, Kota Nakanowatari

八戸工業高等専門学校 産業システム工学科 機械システムデザインコース National Institute of Technology, Hachinohe College

キーワード:ハイパーサーミア,超音波画像,温度計測,治療支援ロボット

連絡先:〒039-1192 青森県八戸市大字田面木字上野平 16-1

TEL: 0178-27-7265, E-mail: iseki-m@hachinohe-ct.ac.jp

1. はじめに

癌温熱療法(ハイパーサーミア)は癌細胞 が熱に弱く、42~43℃程度で一定時間加熱さ れると死滅する臨床事実に基づいている¹⁾.

これの加温熱エネルギー源には種々の電 磁波を用いたものが一般的である. 臨床にお ける代表的な加温装置として、RF(Radio Frequency) 容量結合型加温装置や針状電極加 温装置等があげられる.前者は一対の電極に よって患部を挟み込み, 電極間に流れる高周 波電流によって癌を加温する. 非侵襲に治療 が行える長所がある反面, 生体深部の癌のみ を選択的に加温することが容易でない短所 がある.後者は、針状の電極を患部に直接刺 入し、体外に設けた電極との間に高周波電流 を流し治療を行う装置である.針状電極周辺 が確実に加温されることから、癌に針状電極 を刺入することができれば、高い治療効果が 期待できる.その反面,治療効果が医師の手 腕に依存することや,加温領域が狭いなどの 短所が指摘されている²⁻⁰.これを克服すべく, 針先が展開するタイプの電極の開発もされている⁵⁾.

効果的なハイパーサーミア治療のために は、加温装置の性能に加え、加温中の生体内 温度分布を把握することが重要である.しか しながら前述の容量結合型加温装置や針状 電極加温装置では、これの把握に熱電対温度 計を用いており、生体内の温度分布に関して は半ば目隠し状態で治療を行っているのが 現状である.近年、MRI (Magnetic Resonance Imaging)を応用した生体内温度計測手法が注 目を集めているが、計測に長時間を要するこ とや、低分解能などが指摘されている^{7.8)}.

このような背景から,本研究では超音波診 断装置を応用した生体内温度計測手法を提 案し,その有用性について生体擬似寒天ファ ントムやブタ肝臓を用いた温度計測実験か ら示してきた^{7,8)}.しかしながら,臨床応用を 考えた場合,医師による超音波プローブの走 査は再現性が低く,温度計測精度に影響を及 ぼすことが懸念される.本研究ではこれらの 問題を解決すべく,超音波画像による温度計 測時に超音波画像の撮像を支援する,治療支 援ロボットアームの開発を研究目的として いる.

本研究では、まず、開発した温度計測プロ グラムの温度計測精度の把握実験を行った. 次に、試作ロボットアームの基本性能把握実 験を実施し、本ロボットアームの有用性につ いて検討した.

2. 超音波画像による温度計測の原理

超音波は伝搬する組織の温度に応じ、その 速度が変化することが知られている.一方, 超音波画像診断装置は生体内の音速を一定 として画像描画を行う設計であるため、ハイ パーサーミアによって生体内に温度変化が 生じると、その箇所の超音波画像が極わずか に変位する.この変位量を画像解析によって 検出し、温度分布の可視化を行う.具体的に は、式(1)を解くことによって温度計測を行っ ている^{7,8)}.

$$\Delta T = k_{tissue} \frac{\partial (\Delta d)}{\partial x} \tag{1}$$

$$k_{tissue} = \frac{1}{\alpha - \beta} \tag{2}$$

ここで、 ΔT は生体内の温度上昇、 k_{tissue} は組織 ごとに異なる熱定数、 Δd は画像変位量、x は 深さ方向距離、 α は熱膨張係数、 β は音速変 化係数である、組織ごとに異なる熱定数 k_{tissue} は、温度計測時にキャリブレーションのため に用いる定数である、これは実験的に計測し て求めることができる.

図1は本研究において開発した温度計測プ ログラムのフローチャートである.本研究で 開発した温度計測プログラムでは,温度上昇 に伴う超音波画像の変位量検出のために,画 像処理の一手法であるテンプレートマッチ ングを用いている.通常,テンプレートマッ チングは1ピクセルオーダーでしか変位量の

図1 開発した温度計測プログラムの フローチャート

図2 治療支援ロボットアームの概略

検出をすることができないが、本プログラム ではサブピクセル処理を施すことにより、10 分の1オーダーまで変位量検出を可能として いる.

3. 治療支援ロボットアーム

図2は本研究で開発を目指す治療支援ロボ ットアームの概略図である.本ロボットアー ムは,超音波画像診断装置,ロボットアーム, 小型カメラ,制御用 PC によって構成されて いる.具体的には,超音波プローブを持たせ たロボットアームに小型カメラを取り付け, 画像解析によって患者の体動を検知し,患者 の体動を自動追尾し,再現性のある超音波画 像の撮像を可能とするロボットアームの開 発を目指している.

4. 実験装置

4. 1. 温度計測精度把握実験

図3は温度計測把握実験に用いた実験装置 の概略図である.本実験装置は、生体擬似寒 天ファントム, 超音波画像診断装置, 熱電対 温度計,画像解析用 PC,半田ごて,変圧器に よって構成されている. ハイパーサーミア加 温装置に見立てた半田ごてを寒天ファント ム中央断面に挟み込み,寒天ファントムを加 温し、この時の温度分布を超音波画像診断装 置によって計測する.温度計測結果は、熱電 対温度計およびサーモカメラによる計測結 果との比較を行い,温度計測精度の評価を行 った.加温時間は5分とした.なお,超音波 画像は1分ごとに撮像した.図4は、熱電対 温度計と半田ごてとの位置関係を示した概 略図である.図4に示すように半田ごて周辺 の3点を熱電対温度計によって計測した.

4.2.ロボットアームの精度把握実験

図5は、本研究に用いたロボットアームの 写真である.ロボットアームに超音波プロー ブを持たせ、寒天ファントム内部の超音波画 像を撮像し、繰り返し超音波画像を撮像した 際の画像間のずれを評価した.寒天ファント ム内部には球状の PET 製カプセルが埋め込 んであり、これをターゲットに見立てた.画 像解析によってずれベクトルを検出し、X方 向に関する位置ずれの評価を行った.また、 カプセルの断面積を超音波画像上で計測し、 断面積の変化から Y 方向に関する評価を行 った.なお、実験は50回連続して繰り返し行 った.

5. 結果と考察

5. 1. 温度計測精度把握実験

図 6 は温度分布計測結果である. 図 6(a)は 加温実験直後に赤外線サーモカメラによっ て撮像したサーモ画像である. 図 6(a)から,

図3 温度計測精度把握実験の概略

図4 温度計測精度把握実験の概略

図5 ロボットアーム精度把握実験

図 6 温度分布計測結果

半田ごてによって寒天ファントムが加温さ れていることが確認できる.図6(b)は超音波 画像から温度分布を計測した結果である.図 6(a)と図6(b)を比較すると、両者はよく似た 形状を呈していることがわかる.

両者の加温領域を比較すると,サーモ画像 のX方向距離が8.8mm,Z方向距離が6.3mm であったのに対し,超音波画像によるそれは, それぞれ7.8mm,5.1mmであった.以上の 結果より,両者は1mm程度の誤差で一致し ており,高い計測精度を有していることが確 認できた.表1に熱電対温度センサーと超音 波画像による温度計測結果の誤差をまとめ た.①~③は図4に示した熱電対の位置に対 応している.この結果から,最大誤差は1.0℃ 以下であり,本温度計測手法によって,非侵 襲的に高い精度で生体内温度計測が可能で あることが確認できる.

5.2.ロボットアームの精度把握実験

図7は、超音波画像を繰り返し撮像した際 の画像間のずれをベクトルによって表して いる. 図7に50回の繰り返し試験のうち, 特徴的な画像を示した.具体的には、図7(a) ~(c)はそれぞれ、6回目、22回目、39回目を 示している.いずれのベクトルも左方向にベ クトルが検出されていることが確認できる. このことより、プローブを寒天ファントムに 再接触させた際に、ロボットアームに対して わずかに手間方向にプローブ位置がずれて いることがわかる.検出されたベクトルの平 均と繰り返し回数との関係を図8に示した. 縦軸に位置ずれの平均距離を,横軸に繰り返 し回数を示している. 位置ずれ距離 0.3 付近 の実線は、先行研究によって明らかになった、 温度計測のために許容される位置ずれ距離 の上限値である. すなわちこのラインよりも 上側では位置ずれの影響が温度計測に影響 を及ぼす可能性がある.図8より、位置ずれ

表1 温度計測誤差

	1	2	3
60 秒後	0.5 °C	0.3 °C	0.7 °C
120 秒後	0.4 °C	0.6 °C	0.0 °C
180 秒後	0.1 °C	0.4 °C	0.1 °C
240 秒後	-0.4 °C	0.2 °C	-0.1 °C
300 秒後	-0.7 °C	0.0 °C	-0.2 °C

図7 位置ずれのベクトル表示図

図8 左右方向に関する位置ずれ と繰り返し回数との関係

図9 プローブ奥行き方向に関する位置ずれ と繰り返し回数との関係

は最大 0.7mm 程度であり, ある程度の位置決め精度を有していることが確認できるが, 要

求される位置決め精度を安定的に得られて いないことが確認できる.

図 9 はターゲットの断面積から Y 方向に 関するずれを計測した結果である. 図 9 より, 繰り返し回数を重ねるごとにずれが大きく なっていることがわかる.これの原因として, プローブに塗布した超音波ジェルの影響に より寒天ファントム上面でプローブが滑っ てしまうことが考えられる.

今後, プローブを接触させる際のロボット アームの動作を変更し, 検討を進める予定で ある.

6. まとめ

本研究では超音波画像による温度計測時 に,再現性のある超音波画像を撮像するため の治療支援ロボットアームの開発について 述べた.

温度計測プログラムは1mm以下の温度分 布計測精度,1.0 ℃以下の温度計測精度を有 していることを実験的に示した.ロボットア ームについては,一定の再現性はあるもの, 回数を重ねるごとに精度が低下する傾向に あることを確認した.ただし,本ロボットア ームの使用用途を考えると,多くの繰り返し 回数は不必要であることから,現状でも一定 の効果は期待できるものと考えられる.

今後,画像処理によって患者の体動を自動 追尾し,安定的な超音波画像を撮像可能なシ ステムを構築することを予定している.

- 7. 参考文献
- 日本ハイパーサーミア学会編、ハイパー サーミアがん温熱療法ガイドブック、
 2008 年
- Takahashi H., Tanaka R., Watanabe M., Nakajima T., Kakinuma K., SudaT., Takahashi S., Masuda H., Matsuda J., Kato K., Kubo N., Kato A.: Computer simulation of temperature

distribution for brain tumor hyperthermia using the two dimensional finite element method. Jpn J Hyperthermia Oncol, 11: 356-364, 1995. (Japanese)

- 3) Shindo Y., Iseki Y., Nakane K., Mimoto N., Kubo M., Kato K., Takahashi H., Uzuka T., Fujii Y.: A support system in virtual reality for effective hyperthermia treatments: heating properties of needle applicator for brain tumors, Thermal Med, 27: 79-87, 2011.
- Kubo M., Mimoto N., Kanazawa Y., Shindo Y., Kato K., Takahashi H., Uzuka T., Fujii Y.: SAR analysis of a needle type applicator made from a shape memory alloy using 3-D anatomical human head model, Thermal Med, 25: 105-114, 2009.
- Shindo Y., Shibafuji K., Iseki Y., Kato K., Takahashi H., Uzuka T., Takeuchi A.: Development of Coaxial Needle Applicator Made of Shape Memory Alloy, Thermal Med, 30: 27-40, 2014.
- Kato K., Sato K., Matsuda J., Saitoh Y.: Analysis of RF Capacitive Heating by Computer Simulation, Jpn. J. Hyperthermic Oncol, 8: 29-43, 1992.
- Iseki Y., Nakamura K., Anan D., Kato K.: Development of ultrasound-guided resonant cavity applicator system –Noninvasive measurement of temperature distributions-, Thermal Med, 31: 13-26, 2015.
- 8) Iseki Y., Anan D., Saito T., Shindo Y., Ikuta F., Takahashi K., Kato K.: Non-invasive measurement of temperature distributions during hyperthermia treatments using ultrasound B-mode images. Thermal Med, 32: 17-30, 2017.