コーティング式触覚センサにおける接触位置推定法の改良

Improvement of the contact position estimation method for spray-coated tactile sensor

○石倉 雅也*, 情野 瑛*, 高橋 隆行*

○ Masaya Ishikura*, Akira Seino*, Takayuki Takahashi*

*福島大学

*Fukushima University

キーワード: コーティング式触覚センサ (spray-coated tactile sensor),接触位置推定 (contact position estimation), z 変換 (z-transform), ロボットハンド (robot hand),

連絡先: 〒 960-1296 福島県福島市金谷川 1-1 福島大学 共生システム理工学研究科 高橋研究室 石倉雅也, Tel.: (024)548-5259, Fax.: (024)548-5259, E-mail: ishikura@rb.sss.fukushima-u.ac.jp

1. 緒 言

ロボットが物体の接触を検出するために,触 覚センサが用いられており,抵抗値変化方式や 静電容量変化方式¹⁾など様々なセンサが開発さ れている.触覚センサを装着するロボットのほ とんどは3次元形状であり,中には複雑な曲面 形状を有しているものもある.そのような複雑 な3次元形状にセンサを装着させるための工夫 のひとつとして,柔軟体を用いることでセンサ を曲面に装着する方法²⁾がある.しかし,この

Fig. 1: Concept of the spray-coated tactile sensor³)

センサを含むこれまでに開発されたセンサは, 複雑な3次元形状へ装着させるために全体構造 や製造方法の複雑化,大量の配線処理,それら による全体的なコストの増加等の課題が生じて いる.

そこで筆者らは、上記の課題を解決する触覚 センサとして、コーティング式触覚センサを開 発している.コーティング式触覚センサのイメー ジを Fig.1に示す.本センサはスプレーガンな どで物体に"塗布"することで構成でき、シンプ ルな構造・製造方法であるため、複雑な3次元 形状に対して容易にセンサを配置することがで きる.そのため、これまで接触位置の検出が困 難であった部分への応用が期待できる.

佐藤らは、センサが受けるであろう様々な接触における応答について、等価回路モデルを用いたシミュレーションで検討を行った。そして、センサ上の1点が加圧された"単点接触"において、接触時間に影響しない逆モデルに基づく位

Fig. 2: The structure of spray-coated sensor³)

置推定法³⁾を提案した.本稿では,提案された 位置推定法に用いる逆伝達関数に関して問題点 を見つけたので,本センサの等価回路の観点か ら新たに逆モデルを構築する.また,位置推定 法に用いる時間軸操作方法は,予め決めておく べきパラメータや信号の前処理などが必要であ る.そこで,それらを必要としない新しい時間 軸操作方法を提案する.

2. コーティング式触覚センサ

2.1 コーティング式触覚センサの概要

本センサの構造を Fig.2 に示す.センサを塗 布する基材(ロボットの表面等)の上に導電膜 (導電性を有する基材の場合は不要),圧電膜, 抵抗膜の順で積層したシンプルな構造である. 出力端子は抵抗膜上に必要数配置する.圧電膜 は樹脂系圧電素子のスプレーコーティング工法 4)を用いており,膜厚は約25[µm]である.本セ ンサは,力が加えられることで圧電膜が変形し 起電力が生じるため,センサ自体の電源は不要 である.本センサの構造上,センサ全体にロー パスフィルタである RC 回路が連なる構造とな り,ノイズに強いという特長も有する.

2.2 等価回路と入力信号のモデル化

本センサの等価回路モデルは基本的に分布定 数の RC 直列回路であり,佐藤らは Fig.3 に示 すような ϕ 15×60[mm] の円筒 (SUS304)の基材

Fig. 3: Spray-coated tactile sensor unit

Fig. 4: The circuit model of one dimensional sensor

Fig. 5: Principle of position estimation using the spray-coated tactile sensor

上に 1.5×32 [mm] の 1 次元センサを試作し,モ デル化を行なった. Fig. 4 に示したセンサモデ ルのセンサ部を 31 段の T 型 RC 回路とし,抵 抗値 *R* を 0.24[MΩ],静電容量値 *C* を 7.19[pF] とした. なお,T型 RC 回路の 1 段は,センサ の 1[mm] の長さ分と対応している.

センサの入出力はインパクトスティック(6.5[g], ϕ 3[mm]のアルミ製の棒)をセンサ直上20[mm] から落下させた際の入力(加圧)を振幅 A_b = 3[μ A],周波数 f_b = 2.5[kHz]の単発正弦波と近 似した.これを"基準入力"とする.なお,これ らのモデルを用いたセンサのシミュレーション は、回路シミュレータ LTspiceXVII(アナログ・ デバイセズ社)を用いて行った.

3. 逆モデルに基づく 接触位置推定法

本章では、先行研究で提案された接触位置推 定法³⁾について述べる.モデルとして用いたセ ンサは、2.2節で述べたものである.Fig.5に示 すように、出力端子 A から p[mm]の加圧点直下 に生じる電圧を入力信号 v_F とし、出力端子 A, B の出力信号を v_A , v_B とする.z 領域での入 力信号、一方の出力信号をそれぞれU[z], Y[z], 未定係数を a, b とするとその伝達関数は

$$G(z) = \frac{Y(z)}{U(z)}$$

= $\frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$ (1)

と表される.加圧点から出力端子Aまでの逆伝 達関数を $H_{A,p}(z)$ とし、同様に出力端子Bまで の逆伝達関数 $H_{B,p}(z)$ と定義する.そしてFig.5 に示すように、出力端子Aから P_1 [mm] 地点 を加圧した際の出力端子A,Bの出力信号を v_{A_1}, v_{B_1} とする.それぞれ逆伝達関数 $H_{A,P_1}(z)$, $H_{B,P_1}(z)$ に代入し、加圧点での推定入力信号の 算出を行うと両者は一致する.一方で、もし、他 点を加圧した際の出力信号をこれらの逆伝達関 数 $H_{A,P_1}(z), H_{B,P_1}(z)$ に与えると、それらの結 果は一致しない.この原理を用いた位置推定の 手順をStep I~Step Vに示す.なお、ここで検 討対象としているセンサの全長は、佐藤らが用 いたものと同じ 32[mm] であり、要求される接 触位置推定の分解能を1[mm]とする.

Step I

センサの等価回路(長さ 32[mm])に対し て 1[mm] 間隔ごとに入力信号を与えた際 の出力信号を Fig.4 のモデルに基づいて 計算し,得られた入出力信号から,逆伝 達関数対を 31 組算出する.

Step II

本センサ上において任意の点が加圧され

Fig. 6: Input signal estimation with time reverse method using the invese transfer function obtained by eq.(1).

た時に v_A , v_B を取得する.

Step III

v_A, *v_B* をそれぞれ 31 組の逆伝達関数に 代入し, 推定入力信号を算出する.

Step IV

逆伝達関数 *H_{A,p}(z)*, *H_{B,p}(z)* を用いて得 られた推定入力信号の差の2乗和誤差(以 下,2乗和誤差)を求める.これを全ての 逆伝達関数対 31 組について計算する.

Step V

2 乗和誤差が最小となる逆伝達関数対を探 索する.その逆伝達関数対が算出された 位置を加圧位置とする.

本センサの特徴として,出力信号は入力信号 に対して位相が遅れる.そのため,出力信号か ら入力信号を推定しようとしても,そのままで は因果律から入力信号を求めることができない. そこで先行研究では,Step I で入出力信号を反 転して逆伝達関数を算出し,Step III で出力信 号 v_A および v_B の時間軸を反転して推定入力信 号を算出している.本稿では,これを時間軸反 転手法と呼ぶことにする.

4. 等価回路モデルに基づく 逆モデルの構築

前章で説明した位置推定法の再検証を行う. 位 置推定の手順 Step III において,出力端子 A か ら 1[mm] 地点の逆伝達関数を用いて算出した推 定入力信号を Fig. 6 に示す.推定入力信号が発 散していることがわかる.これ以外にも 2[mm] の位置でも同様であった.そこで本稿では,セ ンサの等価回路を基礎として,逆モデルの構築 について改めて考える.

4.1 推定入力信号の算出式の導出

本センサの等価回路はFig.4のようにT型RC 回路が連なって構成されている.まず,一般的 な1段のRC回路の伝達関数は

$$G(s) = \frac{1}{RCs + 1} \tag{2}$$

となる.これが複数段連なるとき,簡易的にsの係数を α で表すと多段 RC 回路の伝達関数は

$$\tilde{G}(s) = \frac{1}{s^k + \alpha_1 s^k + \alpha_2 s^{k-1} + \dots + \alpha_k} \quad (3)$$

と表すことができる. ここで*a*を任意の定数,*T* をサンプリング時間とし*s*領域から*z*領域への 変換式

$$\frac{1}{s+a} = \frac{z}{z-e^{-aT}} \tag{4}$$

を用いて, *z* 領域での入力信号,出力信号をそ れぞれ*U*[*z*], *Y*[*z*],未定係数を*a*, *b*とし,伝達 関数を*z* 領域で表すと,

$$\tilde{G}(z) = \frac{Y(z)}{U(z)} = \frac{b_0}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_k z^{-k}}$$
(5)

となる.式(5)の伝達関数の逆数が逆伝達関数 $\tilde{H}(z)$ である.式(5)を逆z変換を行った後にu[n]について解くと、時間シフト性

$$z^{-k}X(z) = x[n-k] \& \emptyset \ u[n] \ l\&,$$
$$u[n] = \frac{1}{b_0}(y[n] + a_1y[n-1] + a_2y[n-2] + \dots + a_ky[n-k])$$
(6)

で表される.

次に式 (6) の未定係数 a, bを算出する. 各係 数を $c_0 = 1/b_0$, $c_1 = a_1/b_0$, …, $c_k = a_k/b_0$ とおくと,

$$u[n] = c_0 y[n] + c_1 y[n-1] + c_2 y[n-2] + \dots + c_k y[n-k]$$
(7)

となる. 簡単のため, k = 1とし, $1 \sim L$ サンプ ル前の入力信号は行列を用いて,

$$\begin{bmatrix} u[n] \\ u[n-1] \\ u[n-2] \\ \vdots \\ u[n-L] \end{bmatrix} = \begin{bmatrix} y[n] & y[n-1] \\ y[n-1] & y[n-2] \\ y[n-2] & y[n-3] \\ \vdots & \vdots \\ y[n-L] & y[n-(L+1)] \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$$
(8)

と表せる.式(8)を $U = [u[n], u[n-1], u[n-2], \cdots, u[n-L]]^{T},$ $C = [c_0 c_1]^{T}$ (右肩のTは転置)を用いて表すと,

$$\boldsymbol{U} = \boldsymbol{A}\boldsymbol{C} \tag{9}$$

となり,擬似逆行列 A^+ を用いて C は

$$\boldsymbol{C} = \boldsymbol{A}^+ \boldsymbol{U} \tag{10}$$

となり,未定係数 *c*₀, *c*₁ が求まる. 以上より,推定入力信号 *û*[*n*] の算出式は

$$\hat{u}[n] = c_0 y[n] + c_1 y[n-1] + c_2 y[n-2] + \dots + c_k y[n-k] \quad (11)$$

となる.式(1)を同様に逆z変換を行った後に $\hat{u}[n]$ について解くと,

$$\hat{u}[n] = c_0 y[n] + c_1 y[n-1] + \dots + c_k y[n-M]$$
$$-c_{M+1} \hat{u}[n-1] - c_{M+2} \hat{u}[n-2]$$
$$-\dots - c_{M+N} \hat{u}[n-N]$$
(12)

Fig. 7: Input signal estimation with time reverse method using the proposed invese transfer function

と表すことができる.式 (12) と式 (11) を比較 すると,式 (12) では $\hat{u}[n]$ の算出に,現在と過去 の出力信号と推定入力信号を用いるが,式 (11) では過去の推定入力信号が不要になる.

4.2 等価回路に基づく逆モデルを用いた 推定入力信号の算出

新たに導出した,等価回路に基づく逆伝達関 数 $\hat{H}(z)$ を用いて,等価回路の出力端子付近の 推定入力信号が発散せずに精度よく算出できる かの検証を行う.等価回路の出力端子 A から 1[mm] の地点に,基準入力を与えた際の入出力 信号から逆伝達関数 $\hat{H}_{A,1}$ を算出する. $\hat{H}_{A,1}$ に 出力端子 A から 1[mm] の地点に,基準入力を 与えた際の出力信号を代入し,推定入力信号を 算出する.算出された推定入力信号を Fig.7 に 示す.Fig.7 より,推定入力信号は入力信号とほ ぼ一致し,精度よく算出できていることがわか る.また,出力端子 A から 2[mm] 地点も同様に 精度よく推定入力信号が算出できることも確認 した.

5. 順方向の時間軸操作方法の提案

第3章の Step I, Ⅲの処理について, 先行研 究では時間軸反転手法を提案したが, 時間軸を 反転させる区間の大きさの検討をしなければな らないことや, 推定入力信号 û を算出する際に

Fig. 8: Image of the proposed time shift method to caluclate the estimeted input signal

Fig. 9: Relationship between shift amount and sum of square error

時間軸を反転する処理を必要とする.そこで,そ れらを必要としない新しい時間軸操作方法を提 案する.

5.1 順方向の時間軸操作方法の概要

提案する手法の概要を Fig.8 に示す.本手法 は、Fig.8 左に示すように入力信号の時間軸を順 方向にシフトし、逆伝達関数を算出する.この ことによって、Fig.8 右のように式 (11) の $\hat{u}[n]$ を算出する際に y[n-1], y[n-2] などの過去の 出力信号を用いることができ、推定入力信号が 算出できるのではないかと考えた.

5.2 入力信号のシフト量の検討

推定入力信号を精度よく算出できるかの検証 と,最適な入力信号のシフト量をシミュレーショ ンを用いて調べる.本検証は,本センサの等価 回路の出力端子 A から 16[mm] 地点に基準入力 信号を与えた際の入出力信号を用いる.以下に, 検証の手順を示す.

Fig. 10: Input signal estimation with time shift method

Step I

入力信号と出力信号の立ち上がり(最大振 幅の10%)の時間軸が合うように入力信号 を合わせる.これを基準シフト量とする.

Step II

第4.1節で説明した方法により,逆伝達関 数を算出する.

Step III

逆伝達関数に出力信号を代入し,推定入 力信号を算出する.

Step IV

推定入力信号と,等価回路で基準入力を 与えた際の入力信号との2乗和誤差を算 出する.

Step V

離散時間で 10 サンプル (4[µs]) ずつ入力 信号を順方向にシフトし, Step II~Step I V を繰り返し, 500 サンプル (0.2[ms]) ま でシフトする.

以上の手順で検証し,入力信号のシフト量に 対する算出した推定入力信号と基準入力を与え た際の入力信号との2乗和誤差の関係を,Fig.9 に示す.Fig.9より入出力信号の立ち上がりを 合わせて算出した逆伝達関数が最も2乗和誤差 が小さくなり,精度よく推定入力信号を算出で きることがわかる.立ち上がりを合わせて(基 準シフト量)算出された推定入力信号をFig.10 に示す.推定入力信号は入力信号とほぼ一致し, 精度よく算出できていることがわかる.提案手 法は推定入力信号を算出する上で有効であるこ とを示した.

6. 結 言

本研究では、コーティング式触覚センサでの 逆モデルに基づく接触位置推定法の改良として、 本センサの等価回路の観点から推定入力信号の 算出式を導出した.その結果、出力端子付近の 推定入力信号が発散するという問題を解決し、 出力端子付近でも精度の良い推定入力信号を算 出することが可能になった.

また,新たに入力信号の時間軸を順方向にシ フトすることで推定入力信号を算出する方法を 提案した.入力信号のシフト量の検討を行った 結果,入力信号と出力信号の立ち上がりを合わ せる手法が最も精度の良い推定入力信号を算出 することを示した.

今後,時間軸反転手法と提案する順方向の時間 軸操作方法での接触位置推定の精度を比較する.

謝辞

本研究を進めるにあたり,多くのご助言を頂 き,センサの試作サンプルを製造して頂きまし たムネカタインダストリアルマシナリー株式会 社の海野雄士様,金澤彰裕様,桑田拓弥様,郡 司資孝様にこの場をお借りして御礼申し上げま す.また,本研究の一部は,JSPS 科研費基盤研 究(B)15H02760 の助成を受けたものである.

参考文献

 白岡貴久,郭士傑,橋本和信,向井利春,"ポリ マー材料を用いた静電容量型面状センサの開発 (測定精度と空間分解能両立構造の提案)",日本 機械学会論文集C編, Vol.79, No.798, pp.304-313, (2013)

- 2) 大村吉幸, 鷺坂隆志, 長久保晶彦, 國吉康夫, 尾 崎和行, "フレキシブル基板に埋め込まれた小 型・柔軟触覚センサ", 第29回日本ロボット学会 学術講演会予稿集 DVD-ROM, 3L2-2, (2011)
- 3) 佐藤弘基, LuisCANETE, 高橋隆行, "コー ティング式触覚センサの開発一接触位置信号の 再構成とそれに基づく位置推定法の提案—",ロ ボティクス・メカトロニクス講演会 2019 講演 論文集, 1P1-U05, (2019)
- 4) ムネカタインダストリアルマシナリー株式会社, "PIEZO-ELECTRIC コーティングによる樹脂 系圧電素子", http://www.munekata.jp/eh/, (最終アクセス日:2019.3.4)

北島諒一, Luis CANETE, 高橋隆行, "ロボ ティクス・メカトロニクス講演会 2017 講演論 文集, 1P1-N01, 2017