複数の超音波伝播軸からの位相情報にもとづく風速ベクトルの ワンステップ計算

One-step calculation of wind vector utilizing phase information from ultrasonic propagation axes

○佐々木 健人*,高田 知英**,佐藤 淳***

○ Kento Sasaki^{*}, Tomohide Tanaka^{**}, Atsushi Satoh^{***}

*岩手大学大学院, **日本連続端子株式会社, ***岩手大学

*Graduate school of Iwate University, **Japan Chain Terminal Co., Ltd., ***Iwate University

キーワード: 風速測定 (wind velocity measurment),超音波風速計 (ultrasonic anemometer),位相差法 (phase shift method),位相検波 (phase detection)

 連絡先: 〒 020-8551 岩手県盛岡市上田 4 丁目 3-5 岩手大学 理工学部 システム創成工学科 佐藤 淳, Tel./Fax.: 019-621-6404, E-mail: satsushi@iwate-u.ac.jp

1. 緒言

屋内で飛行させるホビー用途の機体から始まっ たドローン(マルチコプター)は、近年では農 薬や種子の散布、インフラの点検・整備、物流、 測量、映像撮影など屋外での産業用途での利用 が広まっている¹⁾.

ドローンは主にロータに発生する空気力で機体の運動を制御しており,空気力の大きさはロー タ回転速度および対気速度に依存するが,現在 市販されている機体には対気速度を計測する装 置は搭載されていない.

もし飛行中に対気速度を計測できれば,屋外 飛行において問題となる風外乱による姿勢変化 の抑圧性能や定点滞空性能などの向上が見込ま れるほか, Vortex ring state などの好ましくな い飛行状態を回避するためにも利用できる.

そこで本研究ではゼロ対気速度を含む広い速

度域で三次元風速計測が可能な超音波風速計に 着目し、マルチコプターの飛行制御系が必要と する高レート(周期 20ms 以下)の風速計測の 実現を目指した新たな超音波風速計測方法を提 案する.

今回提案する手法は,複数軸の連続波位相計 測情報から2次元風速と音速をワンステップで 計算する新たな計算方法にもとづいており,パ ルス時間差法で用いられるような対向する計測 軸を必要としないため連続波を用いても軸間で の混信を回避できる特徴がある.

2. 超音波風速計の測定原理

2.1 パルス時間差法

今日市販されている超音波風速計のほとんど は超音波パルスの伝播時間情報にもとづき風速 の計算を行っている.

Fig. 1 パルス時間差法

Fig. 1 のように,距離 *L* で対向する 2 つの超 音波計測軸を用い,双方向のパルス波の伝播時 間 (*T*₁,*T*₂)を計測することで風速の計測軸方向 成分 *V_d* は次式のように計算される.

$$V_d = \frac{L}{2} \left(\frac{1}{T_1} - \frac{1}{T_2} \right),$$
 (1)

$$T_1 = \frac{L}{C - V}, \quad T_2 = \frac{L}{C + V} \tag{2}$$

この計算方法は「逆数差法」と呼ばれ、気温に よって変化する音速 Cを計測することなく V_d が求まる特徴がある $^{2)}$.

しかし,超音波パルスが送信された後,受信 側で受信されるまでの待ち時間が発生し,その 間は次のパルスを送信することができない.高 い風速域までの計測を行おうとするにつれて待 ち時間は長くなり,市販の風速計では一般的に 100[ms] 程度の計測周期を必要とする.

2.2 位相差法

Fig. 2 位相差法

Fig. 2のように送信器から連続波を送信する. 送信器の駆動信号 *y*t を次式で表す.

$$y_t = A_t \sin(\omega t) \tag{3}$$

超音波は送受信間を音速Cと軸方向風速 V_d の 合成速度で伝播するため、受信器で受信された 信号 y_r は y_t に対して位相差を生じる.

$$y_r = A_r \sin(\omega t - \Delta \theta) \tag{4}$$

また位相差 $\Delta \theta$ は次式で表される ³⁾.

$$\Delta \theta = \frac{\omega L}{C+V} \tag{5}$$

受信側で実際に計測できる位相差は $-\pi$ から π の範囲であり、これを $\Delta \psi$ とおくと

$$\Delta \theta = \Delta \psi + 2\pi k \tag{6}$$

と表される. ここで *k* は送受信間の超音波の波 数を表す.

2.3 位相情報にもとづく風速ベクトルのワ ンステップ計算

Fig. 3 座標系

計測軸(送信器と受信器の組)が複数存在す るとし, *i* 番目の計測軸の送信器から受信器を 結ぶベクトルを *M_i* とおく.また *M_i* と同じ向き の単位ベクトルを *e_i* とおけば, *e_i* は方向余弦を 用いて次のように表せる.

 $e_i = [\cos \alpha_i, \quad \cos \beta_i]^T, \qquad (7)$ $0 \le \alpha_i, \beta_i, \le \pi,$ $|e_i|^2 = \cos^2 \alpha_i + \cos^2 \beta_i = 1 \qquad (8)$

二次元風速ベクトル $V = \begin{bmatrix} v_x & v_y \end{bmatrix}^T$ の M_i 方向成分を V_i とおくと

 $V_i = \langle V, e_i \rangle = v_x \cos \alpha_i + v_y \cos \beta_i \qquad (9)$

であり、i番目の計測軸における位相差 $\Delta \theta$ は

$$\Delta \theta_i = \frac{\omega L_i}{C + V_i} \tag{10}$$

なので次式が成立する.

$$C + v_x \cos \alpha_i + v_y \cos \beta_i = \frac{\omega L_i}{\Delta \theta_i} \qquad (11)$$

よって n 本の計測軸について

$$Ax = b, (12)$$

$$x := \begin{bmatrix} C & v_x & v_y \end{bmatrix}^\top, \tag{13}$$

$$A := \begin{vmatrix} 1 & \cos \alpha_1 & \cos \beta_1 \\ \vdots & \vdots & \vdots \\ 1 & \cos \alpha_n & \cos \beta_n \end{vmatrix}, \quad (14)$$

$$b := \begin{bmatrix} \omega L_1 & \dots & \omega L_n \\ \overline{\Delta \theta_1} & \dots & \overline{\Delta \theta_n} \end{bmatrix}^\top$$
(15)

 $b \in imgA$ のとき式 (12) が唯一の解を持つ必要 十分条件は $n \ge 3$ であるため、二次元風速と音 速を同時に計測するために必要な計測軸の最低 数は3軸となる.また風速Vおよび風向 ϕ は次 のように求まる.

$$V = \sqrt{V_x^2 + V_y^2},\tag{16}$$

$$\phi = \arctan\left(\frac{v_y}{v_x}\right), -\pi \le \phi \le \pi \tag{17}$$

3. 風速計測実験

3.1 風速計測部

超音波トランスデューサは25[kHz] の製品 (Prowave Electronics 250ST/R160) を利用する.

Fig. 4 空中超音波トランスデューサ 250T/R160

計測部の寸法等を Fig. 5 に示す.送信器は中 央に集められており,計測軸同士のなす角度が 十分大きいため混信は発生しない.

Fig. 5 風速計測部

3.2 機器内の位相遅れと波数 k

トランスデューサ間距離 L = 100[mm] は送 信側トランスデューサ前面から受信側トランス デューサ前面までの距離であり,計測結果の位 相差にはトランスデューサの振動版からトラン スデューサ前面までの距離が原因で生じる位相 差や,電気回路の動特性による位相遅れが含ま れる.これらの合計を α とおく.本実験では, ゼロ風速時の位相計測値 $\Delta \psi_0$ から,計測時の気 温から計算される位相差 $\Delta \psi_{th}$ を引くことで α を求める.

3.3 計測方法

実験装置の構成は Fig. 6 の通り. ファンクショ ンジェネレータ(JDS6600)から 25[kHz] の正弦 波を出力し,出力側のトランスデューサを駆動す る.受信側の正弦波をゲインアンプ(CONTEC ATLF-8A)で 10 倍に増幅し,A/D コンバータ (CONTEC AIO-161601UE3-PE)を用いて送 受信信号を計測した.サンプリングクロックは 6[µs] とした.

Fig. 6 実験装置の構成

ゼロ風速時の各軸の位相の時間履歴を Fig. 7 に示す.

Fig. 7 ゼロ風速での位相の時間履歴

実験時の気温 *t* = 26.3[°C] で,音速 *C*_{th} は理想 気体を考えて

$$C_{th} = \sqrt{\frac{\kappa R(273.15+t)}{M}} = 348.32 \,[\text{m/s}] \quad (18)$$

比熱比 $\kappa = 1.413,$
気体定数 $R = 8.314462,$
分子量 $M = 28.996 \times 10^{-3} \,[\text{kg/mol}]$

とした. また, 各軸の α を Table 1 に示す.

風速の計測では風の流入方向を固定し,計測 部を120[deg.] ずつ回転させて計測した.風の発 生には機器の冷却に使われる DC ファンを使用 した.参照用の定常風速の計測には風車式風速 計 Kestrel 2500 を用いた.

Table 1 位相差の補正値 α

	α
ch1	-93.1068
ch2	-92.7019
ch3	-85.9095

3.4 結果

計測より得られた結果を以下に示す. Fig. 8, 9, 10 はそれぞれの風の流入方向($\phi = 0, 120$, 240[deg.])における位相の時間履歴である(計 測時間 120[ms]). Fig. 11, 12, 13 はそれぞれ の風の流入方向における風速の時間履歴である. Fig. 14, 15, 16 はそれぞれの風の流入方向に おける風向の時間履歴である. Fig. 17 は音速 の時間履歴である. また比較として,風車式風 速計の計測結果を Table 2 に示す.

Table 2 参照用の定常風速

風向 ϕ [deg.]	風速 $V[m/s]$
0	3.0
120	3.0
240	3.0

Fig. 8 風向 0[deg.] 時の位相の時間履歴

Fig. 9 風向 120[deg.] 時の位相の時間履歴

Fig. 10 風向 240[deg.] 時の位相の時間履歴

Fig. 11 風向 0[deg.] 時の風速の時間履歴

Fig. 12 風向 120[deg.] 時の風速の時間履歴

Fig. 13 風向 240[deg.] 時の風速の時間履歴

Fig. 14DC ファンの設置方向 0[deg.] 時の風向の時間履歴

Fig. 15 DC ファンの設置方向 120[deg.] 時の 風向の時間履歴

Fig. 16 DC ファンの設置方向 240[deg.] 時の 風向の時間履歴

Fig. 17 音速の時間履歴

4. 結言

本研究ではドローンの飛行制御に利用可能な 高レートの対気速度計測装置の実現を目指して, 複数の計測軸を伝播する超音波連続波の位相情 報にもとづく風速および音速の計算方法を新た に提案した.また二次元風速の計測装置を作成 し,パルス時間差法では計測が困難な短いタイ ムスケールにおける風速の変化を計測できるこ とを明らかにした.

また今回の計測実験で用いた DC ファンから の風は乱れが大きいため,計測部の柱等の構造 が風速計測におよぼす影響を評価することがで きなかった.今後は風洞装置等を用いて計測へ の影響が少ない構造について検討を行う.

参考文献

- 1) ドローン活用事例 https://www.javoa.or. jp/case/
- T. Hanafusa et al., "A New Type Sonic Anemometer-Thermometer for Field Operation", 気象研究所研究報告, 第 33 巻, 第 1 号, pp. 1-19 (1982)
- J. C. Kaimal and J. A. Businger, "A Continuous Wave Sonic Anemometer-Thermometer", J. Applied Meteorology, Vol. 2, pp. 156-164 (1963)
- 4) 高田ら,音速情報を必要としない位相差法にも とづく2次元超音波風速計測,計測自動制御学 会東北支部第332回研究集会,資料番号223-4, (2021)